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IV. Sturm-Liouville Series of Normal Functions in the Theory of Integral
' Lquations.

By J. MERCER, M.A. (Cantab.), D.Sc. (Liwerpool), Fellow of Trinity
College, Cambridge.

Communzcated by Prof. A. R. Forsyrn, Se.D., LL.D., F.R.S.
Received January 20, in revised form December 16, 1909,—Read March 3, 1910.

Introduction.

OXNE of the most important branches of the theory of integral equations is connected
with the problem of representing a function as a series of normal functions,
HrrBert* and SceMIpT,T who made the earliest contributions, have been able to
obtain sufficient conditions under which an assigned function may be expanded in
terms of a system of normal functions belonging to a symmetric characteristic
function (kern). These conditions are narrow in respect to the nature of the function
which may be expanded, but they have the advantage of applying to very general
systems of normal functions. They apply, in particular, to the expansion of a function
in both the sine and cosine series of Fourier. It is in the light of our knowledge of
the properties of the latter series that the narrowness above referred to becomes
evident. In point of fact, the Hilbert-Schmidt theory is only applicable to FOURIER'S
series corresponding to a function which has a continuous second differential coefficient
in (0, 7), and which furthermore satisfies certain boundary conditions at the end
points of the interval. For example, in the case of the sine series, the function must
vanish at both end points. It would appear, therefore, that the wide generality as
to the system of normal functions is obtained at the cost of the generality of the
function which it is desired to represent.

Later memoirs by KNEsER and HossoN] have made it abundantly clear that, by
restricting the nature of the system of normal functions, results may be obtained in
regard to the representation of very much wider classes of functions than were

* <Gott. Nachr.” (1904), pp. 71-78.
1 ¢Math. Ann.,” vol. 63, pp. 451-453.
i See also A. C. DixoN, ¢ Proc. Lond. Math. Soc.,’ series 2, vol. 3, pp. 83-103.
VOL. COXL—A 474. 8.5.11
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112 DR. J. MERCER: STURM-LIOUVILLE SERIES OF NORMAL

contemplated by HiLpErr and Scmmipr. KNESER'S paper™ is of importance as
marking the first step in this direction, but his results are far less general than those
obtained by HossoN and published last year in the ¢Proceedings of the London
Mathematical Sbciety."i‘ As one of many interesting applications of a general
convergence theorem, the latter] has been able to show that any Sturm-Liouville
series corresponding to an assigned function converges at a point, provided that the
function has a Lebesgue integral in the interval of representation, and is of limited
total fluctuation in an arbitrarily small neighbourhood of the point in question.
Taken in conjunction with other results of a similar kind, this cannot fail to suggest
the possibility of extending most of the well-known theorems on FoURIER'S series to
the whole class of Sturm-Liouville expansions. It is the purpose of this memoir to
show that all the more important theorems are capable of this extension.

It will not be necessary to give here a detailed account of the results obtained,
seeing that those of importance have from time to time been summarised as formal
theorems printed in italics. It may, however, be useful to say a few words as to the
plan on which the memoir has been written. The first section is devoted to the proof
of two theorems of convergence which find repeated applications in the sequel. In
§ 4 of the second, a theorem relative to the expansion of a function as a series of
normal functions is established. The theorem has reference to a very wide class
of expansions. The only obstacle which can hinder its application in any given case
is the difficulty of determining an asymptotic formula for the solving function K, (s, ¢),
when \ is negative and numerically large. At the commencement of the third section
a formula of this kind is obtained which makes it possible to apply the theorem to
what I have called canonical Sturm-Liouville series (IIL., § 20). The latter portion
of the section is devoted to this application. The results obtained are extended so as
to apply to the most general form of Sturm-Liouville series. The fourth, and
remaining, section is given up to a discussion of questions of convergence. It is here
that the properties of orthogonal functions, proved in the latter half of the second
section, find their application.

In conclusion, I may say that in later memoirs I hope to further develop the ideas
which have here been made use of With such modifications as are necessary from
the fact that the characteristic function is no longer limited, I hope especially to apply
them to expansions in LEGENDRE'S and in BESSEL’S functions.

IL—Tar TrroreMs oF CONVERGENCE.

§ 1. In the following pages we shall find it necessary to make frequent use of two
theorems of convergence. These properly belong to the general theory of series (or

¥ ¢Math. Ann.,” vol. 63, pp. 477-524.
T Series 2, vol. 6, pp. 349-395.
1 Pp. 386-387.
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FUNCTIONS IN THE THEORY OF INTEGRAL EQUATIONS. 113

sequences), and, apart from their applications, have no connection with the theory
developed below. It will, therefore, be convenient to enunciate and prove them at
the outset.

The first theorem is : —

Let g (s, n) be a function defined for all values of s wn the interval (a, b), and for o
set of values of n which have + oo for an improper limiting pownt.  Let this function
be such that (1) the upper limit of |g (s, n)| is « finite number g, and (2) r g(s,n)ds

exists as o Lebesque integral for each value of n.  Let g (s, n) be related to a limited
Sfunction, g (s), defined i (a, b) in such @ way that
lim g (s, n) = g (s)

esther at each point of (a,b) or at those pownts of (a,b) which do not belong to «
certain set of zero measure. Then, of f(s) is any function which possesses a Lebesgue
wmtegral i (a, b), we have

lim (" (s, m) £ (s) ds = [ g0/ ds

”n > w

To prove this, let us take any positive number . Let us denote by j, the set of

points of («, b) at which
|9 (s, m)=g (s)| > n.*

and by J, the set complementary to j,. Then we have

[9(smf@ds=[ g6 ds = [ +[ [g6n)=g @176 ds

The numerical value of the first integral is evidently not greater than

G+ 1/)]1ds

where ¢/ is the upper limit of | g (s)| in («, b), and the numerical value of the second
1s not greater than

n, 1f@)]ds,

which is not greater than

b
n[ 1£(5)]ds
We thus have the inequality

(g6 @ as=[ 9 6).76) ds| =@+) [ 176 dsen [ 1] o

* Tt should be observed that, in virtue of its relation to the functions g (s, n), g (s) is summable, and that
Jn 18 therefore measurable. :

VOL. CCXI.—A. Q
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Now, if € is an arbitrarily assigned positive number, we can choose 9 so small that

a[ 1 /()1 ds < e

Further, the measure of j, tends to zero when n increases indefinitely, in virtue of
our hypothesis as to the relation between g (s, 7) and ¢ (s); hence

fim [ [ £(s)1ds = o

Jn

We can, therefore, find a number N such that

+)| 176)]ds <3e
for all values of" n=N. It follows that, for n=N,

b b
[o6mr@ds={ g6/ <
which establishes the theorem.

§2. A theorem corresponding to that of the preceding paragraph holds for
functions of two or more independent variables. The proof in each case follows the
same lines as that which has just been given. It will, therefore, be sufficient to state
the theorem for two independent variables :—

Let g (s, t,n) be a function defined at all points of the square, Q, which consists of
the pounts for which a =s=b, a =t <b, and for a set of values of n which have +
Jor an vmproper limiting pownt.  Let the function be such that (1) the upper limit of

lg (s, t,m)| ws a finite number §, and (2) f g (s, t,n) (dsdt) exists as a Lebesque
: @ : ‘

integral for each value of n. Let g(s,t,n) be related to a limited function g (s,t)
defined in Q in such a way thot
lim g (s, ¢,m) = ¢ (s, ()

n=>w

either at each point of Q, or at those points of it which do not belong to a certain set
of zero measure.  Then, if f(s,t) ts any function which possesses a Lebesgue integral
wm Q, we have o

lim j 905 6m) /(s 0) (ds ) = j@ 7 (s,) £ (s, £) (ds d).

If f(s) possesses a Lebesgue integral in («, b), f(s)f(¢) possesses a Lebesgue
integral in Q. It follows that, with the hypothesis of the theorem just enunciated,

i [ 900 6 (O (@) = [ 95,079 £16) (s
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§ 3. The second theorem, to which reference was made above, is :—

Let g (s, t,n) be a function defined at all points of the rectangle, R, which consists
of the points for which a, =s=0b, a =t =0, and for a set of values of n which have
+ o for an improper limiting point. Let this function be such that (1) the upper

b
bimat of | g (s, t,n)| is a finite number §, and (2) j g (s, t, n) dt exists as a Lebesgue

integral for all values of s and n. Let g(s,t,n) be related to a limited function

g (s, t) defined in R wn such a way that, as n tends to o, g (s, t, n) converges unyformly

to g (s, t) ether wn the whole of R, or, for each positive number v, in those parts of it

whach correspond to . ‘
|t—a,s—B.| =, (m=1,2,.., M),

where the numbers a,, as, ..., oy are all finite.  Then, if f(t) is any function which
has a Lebesgue integral in (a, b),

'E 7 (:9, t,n) f(t)dt

converges uniformly to

Joo s

Jora=c=b, a,=s=0b, asn tends to .

In the first place, let us assume that g (s, ¢, n) converges uniformly to ¢ (s, t) in the
whole of R.  'When any positive number e is assigned, we can then choose N great
enough to ensure that at each point of R

|9 (s, t n)=g (s, t)| < e/f’ (f(z)[d;

for all values of n = N. From this we see at once that

n

<efllr@laff 1ol

[o6nmroa-] 96070

that is to say,
. <

for a=ec=b, a,=s=b, and n =N. The theorem is thus proved for this case.
More generally, let us suppose that, for each positive number %, g (s, ¢, n) converges
uniformly to ¢ (s, ¢) in those parts of R which correspond to '

|t—ans—Bulz=n, (m=1,2,..,M); . . . . . . (1)

then, selecting any value of %, for each pair of values of ¢ and s the poinfs of
@ =t=c which do not satisfy all the inequalities just written lie in a set (J.,)
Q 2
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116 DR. J. MERCER: STURM-LIOUVILLE SERIES OF NORMAL

of intervals® whose number does not exceed M. Let I, be the greatest of the values
of [| f(t)|dt in the various intervals of j,,. Clearly we have

| 6 tm=g (s 0170 de | = @rgpa..,

where ¢’ is the upper limit of | g (s, t)] in the rectangle R. Hence, if J,, is portion
of the interval @ =t =c which is not covered by one or other of the intervals j, ,.

o enr@a-]gor@dl=]] oeen-g6070d +G+oML. @

Now a Lebesgue integral is a continuous function of its upper limit ; hence, if € is
an arbitrarily assigned positive number, we can choose 7 so small that the Lebesgue
integral of | £(t)| in any interval of length 2y, which lies in («, b), is less than

€
2(g+g)M

With this choice of % we have

(G+9" ML, , < %e

for all values of ¢ in (a, b) and of s in (a,, b,), since 1, is the value of

(1.7

in an interval of length not greater than 2.
Again, in virtue of our hypothesis as to the uniform convergence of ¢ (s, ¢, n), we
can find a number N great enough to ensure that

96t m)=g (s, 0] <ef2[ 170

forvall values of s and ¢ satisfying (1), and for all values of n = N, Since the points
of J, , satisfy (1) for each pair of values of s and ¢, we have

[ e em—gls01r@d] <ef [r@laf2] | 7@

which is
< }e

for all values of ¢ in (a, b), of s in (@, b)), and of n = N. Tt follows from (2) that, for
these values of ¢, s, and 7,

|96 tm) @ de= g0 @) de| <e

which establishes the general theorem.

* These intervals may, of course, overlap.
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As a corollary to this theorem it should be noticed that, with the same hypotheses,

j" g(s,t, 1) f(0) di

converges uniformly to

{070,

for values of s in (&, b,), as n tends to .

§ 4. The theorem we have just proved, like that of § 1, admits of generalisation.
On account of its importance in what follows, we state the theorem :—

Let g(s, t, u,n) be a function defined at all points of the rectangular parallelopiped,
P, which consists of the points a,<s=b, a,=t=b, a=u=b, and for a set of
values of n which have + o« for an improper limiting point. Let this function be

such that (1) the upper limit of | g (s, ¢, u,n)| s finite, and (2) j g (s, ¢, u,n)du

extsts as o Lebesque integral for all values of's, t, and n. Let g (s,t,u,n) be related
to a limited function g (s,t, ) defined in the whole of P in such a way that, as n tends
to o, g (s,t,u,n) converges uniformly to g (s,t, ), either in the whole of P or, for each
positive number m, in those parts of it which correspond to

lu_‘“ms”'ﬁmt"')/ml =, - (Wb =12, .., M)a
where the numbers a,, B, are all finite. Then, if f(u) is any function which has
Lebesgue wntegral in (a, b),

j: g (s, t, u, n) f(u) du

converges uniformly to

j‘; g (s, t,u) f(u) du

for a=c=b, ay=t=b, ay,=s=0b, asn tends to w.
In particular, we see that

jb g (s, t, u, m) f(u) du

converges uniformly to

(: 9 (s, t, u) f(u) du

in the rectangle o, =t=b,, a,=s=0b,
Again, let us suppose that @ =a, b=Db,; then, writing ¢=s, we see that,
as n tends to oo,

j:q (s, 8, u, ) f(u) du |

converges uniformly to

J: g (s, ¢, u) fu) du
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118 DR. J. MERCER: STURM-LIOUVILLE SERIES OF NORMAL

for a=s=<b, ay=t=b,. Alsoit will be seen, without difficulty, that

jb g (s, t,u,n) f(u) du

converges uniformly to :
b
[ g (s, t,u) () du

for these values of s and ¢.
Retaining the hypothesis that @ = a,, b = b,, it is evident that

G(s, t,v,n) = J‘s g (s, t, u, n) f(u) du,

being equal to

r 9 (s, t, u, n) fu) du— r g (s, ¢, u, n) f(u)du,

converges uniformly to

G(s, t,v) = j g (s, t,u) f(v) du
for as=b, a,<t=<Dh, a=v=>b It follows at once that, as n tends to oo,

b s
j dv j g (s, t, u,n) f(v) du
converges uniformly to

jb dv js 9 (s, t, 1) f(u) du

for as=<b, a,=t=<b,.

T1.—GENERAL TaHEOREMS RELATIVE TO THE EXPANSION OF AN ARBITRARY
Foxcrion as A SEriES oF NORMAL FuncrioNs. FUNDAMENTAL PROPERTIES
OF SYSTEMS OF NORMAIL FUNCTIONS.

§ 1. Let x(s,t) be a function of positive type defined in the square o =s =¥,
a=<t=0b Lety(s), Y2(s), ..., ¥ (8), ..., bea complete system of normal functions
of « (s, t), corresponding to singular values \j, Ay, ..., \,, .... It has been shown™® that
the series

1 (8) Yy 2 (S) Yo (1 ‘l’ns u (0
¥ ( ))\14' (t) , ¥ ( ))\;J‘()+.‘.+—~L—)Xj’—()+...

is absolutely and uniformly convergent, and that its sum function is «(s,¢). More
generally, the series

‘l’l(;l)il’)l\(t)+‘l’2(;z_‘_l’;(f)++‘_l’_’l%\‘%_i)\”_(ﬂ+ N ()

* «Functions of Positive and Negative Type and their Connection with the Theory of Integral
Equations,” ¢ Phil. Trans. Roy. Soc.,” A, vol. 209, pp. 439-446.
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converges absolutely and uniformly, and-has for its sum function K, (s, ¢), the solving
function of « (s, ¢).

Let f(s) be a function Whlch has a Lebesgue integral in (a,b).  Since (1) is
uniformly convergent in the square ¢« =s =0, a =t =0, it is clear that the function

g (s, t,n) = %1 ¥, (ksr)_\p): t)

satisfies the requirements of the theorem of I, § 3, for these values of s and t. We
deduce that |

4,,,(8) bq:,,(t) f(t) dt
Lx,,—x N O

j K, (s, £) f(t) dt =

and that the series on the right converges uniformly for values of s in (a, b).

It is easy to show directly that the series on the right of (2) is absolutely
convergent. The result, however, follows at once from the fact that we have
throughout left the order of the terms of the series arbitrary, which would otherwise
have been impossible, by RIEMANN’S theorem on derangement.

§2. We may here digress to prove a slight extension of the Hilbert-Schmidt
expansion theorem,* applicable when « (s, ¢) has the plopeLmes mentioned above.
Writing A = 0 in (2) we have

T e j’(t)dt:éli W[ v OrOd @)

Now, the function « (s, ) ¥, (s) f(¢) has a Lebesgue integral in the square o =<s =¥,
a =<t =b; further, the repeated integrals

jb ¥ (5) ds j" K (s, 0) £(2) dt j" ) de j" (5, ) Yo (5) ds

have a meaning. It follows from a known theoremt that the latter are equal ; and
hence that, as

B (6) = N | K(5,0) ) s,

[s0n@a= ] worod  vhee )=« sy
Supplying in (3) we see that
g6 = 3 9o) [ ) g s,

* HILBERT, ‘Gott. Nachr.,’ 1904, pp. 73-75. ScHMIDT, ¢ Math. Ann.,” vol. 63, pp. 451-2.
T Hosson, ¢ The Theory of Functions of a Real Variable’ (Cambridge, 1907), p. 582.
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which is the result referred to. The series on the right is, of course, both absolutely
and uniformly convergent.

It will be recalled that a direct application of ScmMIpT'sS method of proof imposes
narrower restrictions upon f(s); it breaks down, for instance, if [ f(s)]* is not
integrable in (o, b). ‘

§ 3. Returning to the formula (2), it is evident that

_xJ:KA(s,t)f(t)clt=n2=‘,l)\—;1_i\xlpn(s)j:\[;,,(t)f(t) dt. . . .. ()

This relation is true for all values of \, other than the singular values of « (s, ¢), but
in what follows it will not be necessary to consider values of A which are positive or
zero.  As the assumption that N is always negative will make our work somewhat
simpler we shall adopt it throughout this section.

We proceed to investigate the behaviour of the right-hand member of this equality
as \ tends to — co.  For this purpose we shall suppose that the order of the numbers
M, Aoy eees My ..., 18 that of non-decreasing magnitude. Thus far this order has not
been material, but it will appear that the result obtained below turns upon the
hypothesis stated.

Let o, (s) be the sum of the first n terms of the series

O [0 OO A ) [ O£ it () [ DO SO A (5)

The sum of the first m terms of the series on the right-hand side of (4) is

_)\ . m _)\ 3 s
)\1_)\ o1 (6) + né 2 )\11,"")\ I:(In (S) On-1 ('S)]’
which is »
m—1 —)\ ()\n+1_)\n) }\
2y e O e @ ()

Now, suppose that we can choose a positive integer N, such that
Oy (8) < h:
for all values of n = N,. If m > N,, the func:oion of N (6) may be written

51 A (=) [ i A (=) -\ ]
n—2_=1 ()\'n-l-l—)\) ()\n_)\) o S)+ n=N, ()\n+1 ) ()\n )\) "( ) )\m )\o-m( )

Since the coefficients of the numbers o, (s) are all positive when \ is negative, we
thus see that (6) is less than

Mo\ ()\n+1_)\n) )/ [m_‘l _)\'()\’”‘1—‘)\”) —A :] .
s)+h + ;
"El ()\n+1_)\) (}\n—)\) O-n(g)+ l n EN: (>\n+1_)\) ()\n—)\) )\m_k

* We here employ ABELS classical transformation. For the method of this paragraph, ¢f. BROMWICH,
¢ Proc, Lond. Math. Soc.” (1908), p. 59.
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that is to say, less than

Mt =) ()\n+l_)\n)
21 ri=N) (=h) 7 O+ =t

—\

When any positive number e is assigned, we can clearly choose a negative number
A, whose numerical value is so great that the first term is less than e for values of
A = A, and the second term is clearly less than A, for all values of \. Observing that
our choice of A is quite independent of m, we deduce the inequality

2 {%\ u(s) fo G (8) @) dt <h+e, (A=A,

which, in virtue of (4), may be written
b
[ K50 O dtshte, (=4,

In a similar way, it may be shown that, if
o, (s) > k

for all values of n = N,, there exists a negative number A, such that

b
[ K5, 0) £(0) de = hve
for all values of A =< A,.
§4. Let U (s) and L(s) be the upper and lower limits of indeterminacy of the
series (5), it being supposed that, if necessary, these may have either of the improper
values + c. In the first place, let us assume that U(s) is a finite number.

Corresponding to any positive number €, we can then find a positive integer N, such

that
o.(s) < U(s)+e

for all valueé of n=N, It follows from what was said in the preceding paragraph
that we can choose a negative number A, in such a way that

A Ko )/ d=U ()42 (A=A
Thus we have

. ')
Tn -\ K (s ) /O dt=U). . . . . . . . ()
A> —» a .
Again, if U (s) = + oo, this inequality is obviously true, provided that we interpret
“x <o’ as “xis a finite number, or has the improper value — ».” Further, if
U (s) = — o, it is easily shown, by an argument similar to that just employed, that

lim —\ [ K, (5,1) £ () dt = — oo,

A —
VOL. COXL—A. R
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It appears, therefore, that with the convention we have explained (7) is true in all
cases; and in the same way it may be shown that

lim —\ [ K, (5,2) £(2) de = L(s),
A —oo a

with a corresponding convention as to the meaning of a > — . Adopting the
hypotheses in § 1, we may sum up these results in the theorem :—

I i (8), Y3 (), -ovs ¥ (8), ... are a complete system of normal functions of « (s, t),
arranged in such a way that the corresponding singular values are in non-decreasing
order of magnitude, and if U (s), L (s) are respectively the upper and lower limits of
indeterminacy of the series

B 6 [ 0 OO drn6) [ WO SO d @) [ 0O FO d ()
then : '
U (s) = lim —xj K, (s, ¢) £(¢) dt = lim _xj K, (s, ¢) f(t) dt = L (s).

A> —®» pE—
In particular it is clear that, if the series (5) converges, its sum is

lim xj Ko(st) f(O)dt; . . . . . . .. (8)

A> —®

while, if the series is non-oscillatory and divergent, (8) is + oo, or — o, according as
the series diverges to + oo, or to — oo.

§ 5. Let us now suppose that i (s), P2 (s), ..., ¥, ($), ..., is a set of functions which
are continuous in the interval (a, b), and such that ‘

@) (s ds =0, (e m),
=1, (n = m).

For brevity, we shall refer to the set as a system of normal functions for (@, b).
We proceed to obtain two theorems which have important applications in the sequel.

Let f(s) be any function whose square has a Lebesgue integral in (a@, b). The
functions

FO -2 0G| wOrOd =12 ),

have then the same property in virtue of the continuity of the functions \p,, (s) We
deduce at once that, for all values of m,

ﬁ@%%ugwwﬁ%@fmﬁT%—jU%ﬁ%—={j%®fwﬁ]
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)

As the left-hand member is not negative, it follows that, for all values of m

S[lworal <] roras

and hence that the series
Lworoal+[[woroa] v+ [ woroal+.

s convergent.
§ 6. Since the n™ term of a convergent series tends to zero, as n increases indefi-
nitely, it follows from the result obtained in the preceding paragraph that

1imjzzp,,('t)f(t)dz=o.. R )

n=>w

Recalling the hypothesis in regard to f(s), it is clear that this relation is true for
all §mited functions which have a Lebesgue integral in (@, b). When it is possible
to find a number ¢ which, for all values of n, is greater than the upper limit of
| (s)| in (e, b), we may show that (9) is also true for all unlimited functions which
possess a Lebesgue integral in (a, b). Tor, assuming that f(s) is unlimited, let us
select a positive number N, and define a function f, (s) in (@, b) by the rule

L) =) [ f@] =N,
=0 | f(s)| > N.

If € is any assigned positive number, it is known that N may be chosen great
enough to ensure that

[lro-A@la<e

Hence, with this choice of N, we have
b b .
(o roa-] wosod<a

Again, since Ji(s) is limited, we can find a positive integer such that, for this and
all greater values of n, the numerical value of

[0 A0 de

1s less than e.  For these values of n we therefore have

|[[ e (0).7(2)

~ * This is sometimes called BESSEL’S inequality, vide the footnote on p. 56 of BOCHER’S tract, ‘An
Introduction to the Study of Integral Equations’ (1909).

R 2

<e(P+1).
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We have thus established the theorem :—

If the system of mormal functions ¥ (s), Yz (s), .., Yu (), ... @8 such that the upper
limit of | (s)| ©n (@, b) 4s less than a fixed number, for all positive integral values
of n, then

b
tim [ 4, () £() de = o,

provided that f(s) has a Lebesque integral in (a, b).
It will be seen at once that particular systems of normal functions for the interval

(0, 7) are defined by

1) P (s) /\/—72; cos (n—1)s  (n> 1),

i

\/% (n‘ = 1)’
() Y (s) = /\/g sin (n—%) s (n=1),
(i) . (s) = \/?—; cos (n—%)s  (n=1),

(iv) P.(s) = \/-27; sin ns (n=1)*

As each system satisfies the requirement of the theorem just stated, we see
that - —
If f(s) ts a function which has o Lebesgque vntegral wn (0, ), then

" sin
L FO5E e de

tends to the limat zero as the positive integer n increases indefinitely.
By applying this to the function which is equal to £ (s) in an interval (y, 8) of (0, =),
and 1s zero elsewhere, we see that

lim f F(6) 5™ g de = o,

oo cos ?

provided that f(s) has a Lebesgue integral in (y, 8).
§7. Using the notation of §§ 3, 4, let us suppose that the normal functions of

* 0. IV, 89, 11, 12. ‘

t The limitations that (y, 8) should be within (0, ), and that 2 should be integral may be removed
without difficulty, but the theorem enunciated is sufficient for our purposes. An alternative proof of the
theorem in its most general form will be found in HoBsoN’s ‘Theory of Functions of a Real Variable,’
(1907), pp. 674-5.
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« (s, t) satisfy the requirement of the theorem of the preceding paragraph. Then, for
any fixed value of s belonging to (a, b), we have

b
lim 4, (s)j W (2) £(8) dt = 0.
It is easily proved from this that the numbers

a1 (s), 2(8), «ovy 0a(8), ...

are everywhere dense in the interval (L (s), U (s)).*

We can therefore find a sequence of these numbers which has any given number
belonging to the closed interval (L (s), U (s)) for its limit. Referring to the theorem
of § 4, we see that : —

If, in addition to the hypotheses of the theorem of § 4, it is assumed that the upper
limit of |, (s)] i (a, b) ts less than a fixed number for all values of n, then, by the
introduction of suitable brackets, the series

) [ 00 0 drda6) [ 9 (0) 7O de e +90() | 00 S (0) .

may be made to converge to either of the limats

e -foA(s, ) £(¢) dt,

A> —» i

provided that this limit ts finte.
§ 8. Returning to the system of normal functions of § 5, let us suppose it to be
such that

" 2 b
for each limited function ¢ (s) which has a Lebesgue integral in (@, ). By considering
the function which is identical with ¢ (s) in an interval (o, b)) of (a, b) and is zero
elsewhere, we see that

2l nos0@] =] word

provided that ¢ (s) is limited and has a Lebesgue integral in (a,, b;).

Let us now suppose f (s) to be a function, defined for all values of s, which has a
Lebesgue integral in any finite interval. Let y (s, t) be a limited function which has
a Lebesgue integral with respect to ¢ in (a, b,), for each value of s in a certain closed
interval (as, b,); further, let us suppose that x (s, t) is a uniformly continuous function
of s in (ay, b,), for values of ¢ belonging to (a,, b;). In virtue of the latter condition,

* (f. HoBsoN, ‘ The Theory of Functions of a Real Variable,” p. 712.
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when any positive number e is assigned, we can choose a positive number % small
enough to ensure that

Ix (s+m,8)—x (s, )| <,

for all values of ¢ in (a,, b;) and for all pairs of points s+u, s belonging to (as, b,) for
which |9| <#%. Taking any fixed value of s, it follows from this that

b
[[Ix(s+m 0)=x (s, ) de< e (bi=a);
and hence that

by
lim [ [x (s, )=x (5, 6)|dt = 0
n=>0Ja

at each point s of (as, b,).
In the first place, let us suppose that f(s) is a limited function ; then

X (s: ) f(t+s)

is a limited function of ¢ and has a Lebesgue integral in (a,, b,) for each value of s
in (a5, b,). We therefore have

R Ubtlf () x (5, 8) f (t+s) dt:r:j’: [x(s,t) f(t+s)Fde, . . . (10)

for @y =s=b, The right-hand member of this equation and each of the terms of the
series on the left may be shown to be continuous functions of s in the interval (as, b,).
For, supposing as above that s and s+ both belong to (a,, b,), we have

by

("Dt 0 £ ersmP di= [ x 60 f (T e
=[Nt OFIx 6 O s |
| [ 0P Ersemp=L/ )P .. (1)
The first term on the right is not greater than
P[] 1m0 =D s, OF

where f is the upper limit of | f(s)|; and the integral just written is not greater
than

2% [ [x s+, ) =x (1),
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where y is the upper limit of x(s,¢) in the rectangle o, =t=1b, o, =s=b, It
follows from the remark made above that

tim [ s +m, OF =[x (s, APHL G+ s4mPde =0 . . . (12)

at each point s of (a, b,).
Again, the second term on the right of (11) is not greater than

X || 1S sm)P=[f(e+5)F|de;

and the integral just written tends to zero with %, by a theorem due to LrBEscur.*
Thus we have

tim [ s, O P (LS ()P =[S )Py de = 0

at each point s of (s, by). Taking this in conjunction with (12), we see from (11)
that '

ﬁ [x (s, t) f(t+3)] dt

is a continuous function of s in (a,, ;). It may be proved in the same way that each
of the terms

[ Ox(s,0). s0rs)

is continuous in this interval.

It has now been shown that the positive series on the left of (10) has terms which
are continuous in (a,, by), and a sum function which is also continuous in this interval.
It follows from DinT’s theoremt that the series is uniformly convergent in (a,, b,);
and hence that, as # tends to o,

j:gu,,(t)x(g,t)f(ws)dt R ¢ 1)

converges to zero uniformly for a, =s = b,.

§9. Let us next suppose f(s) to be an unlimited function. We may show that
(13) converges uniformly to zero, provided that the normal functions v, (s) satisfy the
requirement of § 6. For, let us define a limited function f; (s) by the rule

HE)=S6)  [f6) =N
=0 | /()| > N

* Vide ¢ Legons sur les Séries Trigonométriques’ (1906), pp. 15, 16. :

T Diny, ‘Fondamente per la teoria delle funzioni di variabili reali’ (Pisa, 1878),§99. See also Youna,
“ On Monotone Sequences of Continuous Functions,” ¢Proc. Camb. Phil. Soc.,” vol. xiv., pp. 520-523. A
proof of the theorem will be found in HoBsoN’s ¢ Theory of Functions of a Real Variable,” pp. 478-479.
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and, assuming an arbitrarily small positive, €, to be assigned, let N be chosen great
enough to ensure that

jb:b | f@®) =/ ()] dt <e

Then we have
[ Ox60) Fers) = @) x 60 A de =53] 0+ ~A )

which is certainly less than ey, for all values of s in (@, b,). Again, since f; (¢+35)
is limited, we can choose a positive integer m such that

b,

Ha, $u () X (5, 8) S (1+9) dt} <e

for n=m and a, =s =<b, It follows that, for these values of » and s, we have

[ @)X (s, 0.7+ 9) | < e(Fe)s
and hence that l

[ moxe 0 sersa

converges uniformly to zero in (as, b,).
It may be proved in the same way that each of the other integtals

j:"’"(”x(s, t) f(xtts)de

has this property. Hence the theorem :—

Let the system of normal functions yn (s), ¥ (s), .., U (8), ... be such that (1) the
uppe'r limat of |, ()| n (@, b) is less than a fixed number, for all positive integral
values of n, and (2)

b 2 b
[ wwsoa] =[wora,
Jor each limited function ¢ (s) which has a Lebesgue integral wn (a, b).  Let f(s) be a
Sfunction, defined for all values of s, which has a Lebesque integral in any finate
wnterval.  Let x (s, t) be a limated function which, for each value of s wn an wnterval
(@3, bs), has o Lebesque integral with respect to t in an interval (a,, b)) (¢ = a, <b, =b);
and let x (s, t) be a umformly continuous function of s wn (ay, by) for values of ¢
belonging to (w,, b)). Then, as n tends to w, each of the four integrals

f P ()X (5, ) f (£t ks) di

converges uniformly to zero in the interval (a,, by).
The theorem we have just enunciated is of very general character, and may be
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stated in a variety of particular forms. Without exhausting all possibilities, we shall
mention two corollaries which will be of use in the sequel. ‘

It has already been pointed out that the four systems of normal functions defined
in § 6 satisfy the condition (1) of the above theorem ; and it will be shown, in a paper
to be published shortly,* that the condition (2) is also satisfied. Further, a function
x (¢), which has a Lebesgue integral in an interval (y, 8) (0 =y < 8 =), may be
regarded as a uniformly continuous function of s in any interval whatever, for values
of ¢ belonging to (y, 8). We have thus the first of the corollaries mentioned :—

Let f(s) be a function, defined for all values of s, which has a Lebesgue integral in
any finite interval ; and let x (¢) be a limited function which has o Lebesque integral
wm an wterval (y, 8) (0 =y < 8=m). Then, as the positive integer n increases
wndefinately, each of the eight integrals

ﬁf(isit)x(t) s;]; Intde

converges uniformly to zero wn any finite interval. T

A sufficient condition that x (s, ) may be a uniformly continuous function of s
n (y, &), for values of ¢ belonging to (y, 8) is that x (s, ¢) should be a continuous
function of the two variables s and ¢ in the rectangle v =s =¢, y =¢t=3. Hence we
have the second corollary :—

Let f(s) be a function, defined for all values of s, which has a Lebesque vntegral in
any finite interval ; and let x (s, t) be a continuous function of the two variables

* In this paper I shall prove the following theorem :—
Let f(s) be any function whose square has @ Lebesgue integral in (0, w).  Let Y1 (s)y 2 (s), s ¥n (8), ... e
the complete system of normal functions which, for suitable values of p, satisfy the differential equation
d?u

a7 T (g+mu =0,

and an assigned pair of boundary conditions at the end poinds of (0, w).  Then the series
w 2 e 2 - 2
([noroa]«[[Tnoroa] s +[[nosou]+..

is convergent and ils sum is

[REORC
in all cases. .

We shall see below (IV., § 9, 11, 12) that the four systems of normal functions each satisfy the require-
ments of this theorem.

In the meantime the reader will be able to deduce the particular cases here required from a result
obtained by A. C. DIxoN (“On a Property of Summable Functions,” ¢ Proc. Camb. Phil. Soc.,” vol. xv.,
pp. 211-216).

T The limitation that # should be integral may be removed without difficulty. HossoN has proved the
equivalent of this corollary for the case in which x (¢) has limited total fluctuation in (y, 8), vide *“On the
Uniform Convergence of Fourier’s Series,” ¢ Proc. Lond. Math. Soc.,” ser. 2, vol. b, pp. 277-281; ‘The
Theory of Functions of a Real Variable’ (1907), pp. 683-687.

VOL. CCXT.—A, S
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s and t in the rectangle vy =s =8, y=t=8 (0=y <8=mn). Then, as the positive
wnteger n inereases indefinitely, each of the eight integrals '

s :
j S(xsxt)x (s, 0) 0 g d
,y N

converges uniformly to zero in (y/, &).

§ 10. From the first corollary of the preceding paragraph, it is possible to deduce a
theorem which we shall have to employ below. This theorem depends upon the
following lemma :—* '

Let g (s, n) be a limated function defined for all values of s in an interval (a, b),
and for all positive integral values of n; also let this function converge to g (s), as n
wnereases indefinitely, uniformly in (o, b). Then, as n wncreases indefinitely, the
arithmetic mean

%{g (5, 1)+g (5, 2)+ ...+ g (s, m)}

converges uniformly to g (s) in (a, b). _
To prove this, we observe that, when any positive number e is assigned, a positive
integer N; may be chosen great enough to ensure that

19 (s,m)—g ()| < e

for all values of n=Nj, and of s in (a,b). It follows at once that we have

g (s, D)+g(s,2)+...+g(s, n)——g(s)

<15 4g s =g ()| +he

As g (s, n) is limited, it is clearly possible to choose a positive integer N, in such a
way that the first term on the right is less than e, for all values of n=N,, and of
sin (@, b). Hence we see that, when n is not less than the greater of N, and N,

%{g(s, D4g9(s,2)+...+¢g(s,n)}—g (8)' <

for all values of s in (a, b). The lemma is therefore established.
With the notation of the previous paragraph, let us write

) .
g(s,n) = j Fs+1) x (¢) sin & (2n—1) ¢ dt.
Y
Clearly ¢ (s,n) satisfies the requirements of the above lemma, the function g (s)
being everywhere zero, and («, b) any finite interval whatever. Since

n
S sin  (20—1) ¢ = sin® utfsin 4,

r=1

* (f. HARDY, ‘Proc. Lond. Math, Soc.,” ser. 2, vol. 4, p. 257.
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it follows from the lemma just established that

%jif(é+t) ()sm 2nt

converges uniformly to zero in any finite interval.

The same remarks being applicable when f(s+t) is replaced by either of the
functions f(s—t), f(—s+1t), f(—s—1t), we have the theorem :—

With the hypotheses of the first corollary of § 10, each of the four functions

1 J s sin® tnt
+s+1) x (t) ——2-dt
n S(Es£t)x () sin§t
converges uniformly to zero jfor values of s wn any finite wnterval, as the positive
wnteger n increases indefinitely.
It will be clear that a variety of results may be obtmned from the corollary referred
to by a similar process.

IIT.—A MzerHOD OF REPRESENTING AN ARBITRARY FunNcrion 1N TeRMs oOF
SOLUTIONS OF A STURM-LiouviLLeE EqQuatioN. GENERAL THEOREMS ON
THE BEHAVIOUR OF STURM-LIOUVILLE SERIES.

§1. We proceed to apply the foregoing results to the theory of Sturm-Liouville
series.  With this in view, we shall commence by considering those solutions of the
differential equation

d [, dv B ’
%<kdm> (gr=Do=0. . . . . . .. ()

which, by a suitable choice of the parameter », can be made to satisfy a certain pair
of boundary conditions at the ends of an interval (@, b). In what follows it will be
assumed that in the closed interval (o, b) (1) { is a continuous function of x, (2) g and
k are continuous functions of z which never vanish, (3) % possesses a continuous
differential coefficient, and (4) gk has a continuous derivative of the second order.

The pair of boundary conditions above referred to will be supposed to be one of the
following four :—

- « dv

(1) d—w—-hv = at r=a
dv .
d—w-l—Hv_ ,y &=

(i) v=0 , XTE=a
WiHo=0 , w=b
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(iii)%—hv:O at m=a}
| =0 , x=1b

(iv) =0 ’ 9:=0&}
v=0 ,w =0

The constants A and H will be supposed real, but will be otherwise unrestricted.

In the sequel we shall employ the symbols B, ,B, ‘B, !B to denote the pairs of
boundary conditions numbered (i), (ii), (iii), (iv), respectively. Tt will be observed
that the letters which stand to the left of B indicate the end points at which the
boundary condition is v = 0.

§2. With the hypotheses of the preceding paragraph, we may transform (1) by
means of the substitution

§ = fr( gfk)"”? da, u = (gk)"v, p=1réE
where £ 1s the constant T
& .—7}-———————__
|| (gfty™ de
The differentialv equation then becomes

d*u )
— = S 24
ds? + (q+ﬁ) u =0, : ( )

w (s) and j (s) being the functions (gk)"* and L respectively, expressed as functions
9

where

of s. In virtue of our hypotheses, it will be clear that ¢ is a continuous function of s.

Corresponding to the interval @ =z =0 we have the nterval 0 = s =, and to each

pair of boundary conditions B, ,B, !B, !B for the former interval there corresponds a

pair for the latter; these we shall denote by B/, (B, "B/, B’ respectively. The
reader will find that the pair of boundary conditions B’ is

du

ds

d—u+H’u=O ,y S=1r
ds

where %/ and H’ are real constants whose values depend upon 4 and H respectively ;
he will also find that the pair §B’ is

u=0 at s=0
u=0 , s=x

The pairs of boundary conditions B/, "B’ will then be obvious.

—hu =0 at s=0
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§3. In what follows we shall consider in detail only the case when the pair of
boundary conditions for (@, b) is B. A slight modification of the method developed
below is necessary to obtain a formal proof when the pair of conditions is B, ’B,
or !B, but the nature of this modification is so obvious that we shall content
ourselves with a statement of the corresponding results.

After what has been said in the previous paragraph, it is clear that the problem of
determining the solutions of (1) which satisfy B is equivalent to that of determining
the solutions of (2) which, for suitable values of pu, satisfy B’

It may happen that certain of these values of p are not all positive. If so, we can
choose a number « which is less than the least of them. The equation

2,
i%+ (q+x+p)u=0
is then such that the values of u for which there exist solutions satisfying B’ are all
positive, and clearly the aggregate of these solutions is identical with the aggregate
of the solutions of (2) which satisfy B. It follows that, without loss of generality,
we may suppose the values of u for which there exist solutions of (2) satisfying B’ to
be all positive. '
It has been shown by KNesERr that the GREEN’S function® of
d*u

.C.l_?+gu=0........---(3)

for the pair-of boundary conditions B’ is

k(s,0) = 0(s) (1) (s=t)
=¢(s)0(t) (s=1),

where 6 (s)t satisfies (3) and the boundary condition

@—k’u=0 at s=0,
ds :

¢ (s)T satisfies (8) and the boundary condition

d—“-{-H’u:O at s=m,
ds

and the two functions are chosen in such a way that

0(s) ' (s)= (s) ' (5) = —1.

* For the theory of GREEN’s functions, see HILBERT, ¢ Gott. Nachr.” (1904), pp. 214-234, and KNESER,
¢ Math. Ann.,” vol. 63, pp. 482-486.

t From a theorem on linear differential equations it is known that; as ¢ is continuous, these solutions
exist and have continuous second derivations in the interval (0, =) (vide Prcagp, ¢Traité d’Analyse,’
tome III. (1896), p. 92).


http://rsta.royalsocietypublishing.org/

A
N
-\
A

[~

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

[~y

/J
A

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

134 DR. J. MERCER: STURM-LIOUVILLE SERIES OF NORMAL

The values of u, say A, Ny, ..., \,, ..., for which there exist solutions of (2) satisfying
B’ are known to be the roots of the determinant of (s, ¢). Further, if 4y, (s),
P (8), +ovy P (8), ... respectively are these solutions, chosen in such a way that

j o (fds=1 (n=1,2,..)

it is known that they are the complete system of normal functions of «(s,?)-
Recalling that N\, X, ..., \,, ... are all positive, it follows from the theorem quoted
above® that . .

(s, )= 3 BOBO

n=1 )\n
§ 4. Consider now the effect of replacing ¢ by g+X\ in (2), where X is a negative

number.t The values of u for which there exist solutions of

d*u

e T (g+A+p)u =0
satisfying B’ are clearly \,—\, ;=X\, ..., \,— ), ..., and the solutio ns corresponding to
these are i (s), Pa(s), ..., P (s), ..., vespectively. It follows from (4) that the
GREEN'S function of

d*u

agz—Jr(q—t—)\)u:O. N €)

s () 0 ()

_— L Mt

v n=1 )\n"‘)\,

1s

e, K,(s,t), the solving function corresponding to «(s,t). But, by KNEsEr’s
theorem, the GREEN'S function of (5) for the pair of boundary conditions B’ is the
function defined by '
‘ 8, (s) ®\ (1) (s=¢)
@, (s) ©,(t) (s=1),

where 0, (s) satisfies the equation (5) and the boundary condition

£Q—‘-h’u: 0 at s=0,
ds
and @, (s) satisfies this equation and the boundary condition
@+H’u=0 at s =,
ds
* 11, § 1. :
t For our immediate purpose this restriction may be replaced by the wider one that A is not equal to
one of the singular values Ay, Ag, ..., Ay, .... As the condition that A should be negative is forced upon us

in the following paragraph, and we shall not need to consider other values, we shall continue to suppose
that A is negative (vide IL, § 3).
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the two functions being such that

0, (s) ¥\ (5)—@, (s) ®, (s) = —1.
Writing

=R RO=ag)
we thus see that
K, (s, z):"_——x(?(fg(t) (s=1)

_ ¢ (s) 6,(t) =
=50 (s=1t),. . . . . . . . (6)

where 6, (s) is the solution of (5) defined by the conditions 6, (0) =1, ¢,(0) =¥/,
¢, (s) is the solution defined by ¢, (7) = 1, ¢/, (w) = —H’, and § () is the value of
b (8) 05 ()00 (s) &' (5),
which is known to be independent of s.
§ 5. The result just stated may be employed to obtain an asymptotic formula for

K, (s,t), when )\ is negative and numerically large. For this purpose it will be
convenient to write A = —p?, where p is supposed real and positive. If we denote by
D the operator %, the equation (2) then becomes
[D*—p*lu = —qu.
The complete primitive of this is
% = ¢; cosh ps+¢, sinh ps—[D*—p*1™ qu

= ¢; cosh ps+c, sinh ps— %— {{D=p] "t qu—[D+p]™" qu}
p
= ¢, cosh ps+¢, sinh ps— 1 js ¢, sinh p (s—s;) dsy,
pJo

where ¢, and ¢, are constants, and ¢, u, are what ¢, u become when s, 1s substituted
for s.
If w = 0,(s), the conditions 8, (0) = 1, #,(0) = I/ give

Cl = ]_, 02 = Z_Lj
p
Accordingly we have
/ s ’
0, (s) = cosh ps+ % sinh ps— %j @0, (s;) sinh p (s—s;))ds.. . . . (7)
0
1f we write
_ 6.(s)
bls) = cosh ps’ (8)

this equation becomes

4 1 cosh ps; sinh p (s—s,) 9
Gs) = 1+ tanh ps— j Gl (51) b T )
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Now at all points of the closed interval_ (0, m)
0 =tanh ps < 1;
and, whatever value belonging to the interval s may have,

sinh ps+ sinh p (s—2s,)
cosh ps

cosh ps, . sinh p (s—s,)
cosh ps

sinh p (s—2s;)

= L tanh ps+%
? peTe cosh ps

1
)

=1

—_ 9

if s is a point of the closed interval (O, s).  Hence, if ¢ be the greatest value of
[¢(s)] in (0, ), we see from (9) that

_ o
§A51+M—‘—+Qj [ g1 | sy,
p o po

&= <1+ V_::L>{1 IK ]glldsl}—l.v

P

which may be written

It follows that {,(s) is limited for values of p that are greater than a certain
positive number, and of s that lie in the closed interval (0, #).

§6. It will be convenient in what follows to use «(p, s) as a shorthand symbol for
the phrase ““a function of p and s which is limited for values of p that arve greater
than a certain positive number, and of s that lie in the closed interval (0, u).”

With this convention it follows from the result obtained in the preceding
paragraph, that (9) may be written

Ck(s)=1+9‘u(%ﬁ)-, S 10

whence, in virtue of (8), we obtain the formula,
0, (s) = coshps<1+?i(&§>>. R (£
P
In order to obtain an asymptotic formula for ¢, (s), we turn back to the equation (7).
Differentiating with respect to s, we obtain
. (s) = p sinh ps+7/ cosh ps-—-f 10, (1) cosh p (s—s,) ds,.
0
Using (11) this becomes
¢, (s) = p sinh ps+A4 cosh ps——fs ¢, cosh ps; cosh p (s—s,) ds,
0
- ;_) (Z Q1 (p, 81) cosh p (s—s))ds.. . . (12)
Since

cosh ps, . cosh p (s—s,

)<1
cosh ps '
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for all values of s, which belong to the interval (0, s), it appears that the third term
on the right-hand side of (12) is of the form

a (p, s) cosh ps;
and it is evident that the fourth is of the same form. Thus (12) gives
¢, (s) = p sinh ps+a(p, s) cosh ps.

Proceeding in a similar manner, we may obtain analogous formule for ¢,(s) and
¢\ (s). It is, however, more expeditious to deduce these from the formule already
obtained for 6,(s) and ¢, (s) by a device which we proceed to explain. Putting in
evidence the argument of g, let u (s) be the solution of

2
O Ly (r—s) +\Ju = 0

in the interval (0, w), which satisfies the conditions u =1, %?-;-6 =H/, at s=0.

(Clearly v (w—s) is the solution of

d*u '
IF +[q(s) +A]u =0
in this interval which satisfies the conditions % = 1, gllg = —H’ at s = =. Recalling

that the asymptotic formula (11) is valid for all values of 7/, and for all continuous
functions g, we deduce from it the formula

$x(s) = cosh p (7—s) <1 + a_(’;))’_i)>;

and similarly, in virtue of the relation

Ll (mes)] = =t (m—s),

ds

we obtain

¢ (s) = —psinh p (m—s) —a (p, ) cosh p (7w —s)

from the formula given for ¢, (s).

§ 7. Supplying the formule of the preceding paragraph in
_ O (M) = i (s) On(s) =i (s) ¢s (5),
we obtain
8 () = cosh p (m—s) [p sinh ps-+a (p, 5) cosh ps]<1 n “_(B’—S—)>
p

+ cosh ps [p sinh p (m—s) +a (p, 5) cosh p (w—s)] <1 + (e 8) S)> ,
P/
where it‘must be borne in mind that the various symbols « (p, s) do not necessarily

refer to the same function On multiplying this out it appears that the terms which
VOL. CCXI—A. T
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do not involve a(p, s) give p sinh pm; and each of the remaining terms is easily shown
to be of the form
o (p, s) sinh p.

Recalling that & (M) is independent of s, we thus see that

S(\) = p sinh pr <1+ (P>>
p

where, in analogy with the notation explained in § 6, a (p) is a shorthand symbol for
“a function of p which is limited for values of the argument that are greater than a
certain fixed positive number.” If; in a similar way, we use a (p, s, t) to denote
“a function of p, s and ¢ which is limited for values of p that are greater than a
certain positive number, and of s and ¢ that lie both in the closed interval (0, «),” the
formulee of this and the preceding paragraph, when supplied in the expressions for
K, (s, t) obtained in § 4, give

K, (s,¢) = Ty (s, )(1+“(p’8t)). S (13)
p
where
T (s, t)zcosh ps c.osh p (m—t) (s=1)

p sinh pw

cosh p (m—s) cosh pt (5= 1)
p sinh pxr T

§ 8. Let f'(s) be any function which has a Lebesgue integral in the interval (0, 7).
Then from (13) we obtain

M LK (s =1 (5 017 () A = p | (s )y, ). F0)

Now when s= ¢ we have

cosh p (m—s-+1)+cosh p (m— s——l)
2 sinh pw

pLs (s, t) =

hence, recalling that T, (s, ¢) is a symmetric function of s and ¢, we see that

pLy (s, t) = coth p,
for0=ss=mw, 0=t=m
Since coth prr, considered as a function of p, is limited in any range which does not
include points within an arbitrarily small distance from the origin, it appears that,
for 0 =s=m, 0=<t=m, and for all values of p greater than any assigned positive
“number, pl', (s, ¢) is limited. The same remark therefore applies to the function
Py (s, ) o (p, s, t).
Again we have
lim pIy (s, 8) = 0 (s #t) =1 (s=1)

p=®
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It follows that, for unequal values of s and ¢,

lim pT (s, t) a (p, 5, t) = 0.

p>®

Applying the theorem of I, § 1, we deduce that, as p tends to =,

p| s ) ap,s0) () d,

) j (K, (s, &)~ Ty (s, )] £ (¢) de

tends to zero, for all values of s in (0, ).
In what follows we shall express the result just obtained by the notation

-x'(;’ K, (s, t) £ (1) dt i=== -—xj’o’ T (s, 1) £ (1) dt,

the symbol between the left- and right-hand members indicating that their difference
tends to zero, as A tends to — co.
§9. Let us now consider

~\ [T, 1) £ ()

0

The value of this is evidently

P cosh P (7T—8) s . P cosh pS " i _ .
jo cosh pt £ (1) dik LSS j cosh p (r=1) f (1) dt. . (14)

sinh prmr n

Now, whatever value s may have in the closed interval (0, 7),

p cosh p (m—s) (° _ 7, | < p cosh p (m—s) [* _ ,
‘ sinh pm joe J (@) dt sinh pw §0|f(t)|dt s (19)
hence we see that
pcosh p (m—s) (¥ _,.
sinh pr joe nfE)de oo Lo . (16)

converges to zero, as A tends to — oo, It follows that

peoshp (m=3) [* o 1 (1) dt =5 PSR LLT=) (o 1)
0

sinh par 2 ginh par 0

Since a corresponding result épplies to the second member of (14), we finally
obtain

A0 (s, 0) £ (@) dr iz LRI () i O [ emn f () i, (a7)

2 sinh pmT 0 2 sinh pT
T2
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| § 10. Let us now suppose that 0 <s <7 If a is an arbitrarily assigned positive
number less than, or equal to, s, the first term of the right-hand member of (17) may

be written
p cosh p(w—s)[ e g R :}
S ik o j o | ey de).

Since

p cosh p (m—s) (" ] pe? = cogh p (m—s) [**
2 sinh pmT .(o ¢ f(t> dt| = 2 sinh P L lf(t)l dat,

it is clear that

p cosh p (m—s) (™
T j oy de. . . . .. .. (18)

converges to zero, as A tends to — oo,
Again, by a simple substitution, it is easily seen that

r e f(t)yde = e” r e fs—t) di;
S—a 0
and evidently

per* cosh p (m—s) [* _, o e P (" et e
5 sinh pr Le"f(s t)di 3 ZLePf(s tyde. . . (19)
We thus prove that
p cosh p(w—s) [* _, N
i foepf(t,)dm 2[Oepf(s bde. . . . (20)

The restriction & =<s may now be removed, provided that the function f(s) is
defined for values of s outside (0, ) in any manner consistent with the condition,
that f(s) should have a Lebesgue integral in every finite interval. For if a > s,
we have

Bl e fls—t)ydiz==E[ e f(s—1) dt,

and the right-hand member of this has been shown to differ from the left-hand
member of (20) by a number which tends to zero, as \ tends to — co.
By the same method and with the same convention it may be shown that

Mj"ep(w—nf(t)dtmgre”"tf(s—l—t)dt.. Coe L (21
s 0

2 sinh pwr

Hence, from (17) and (20) we see that

-—Aj: K, (s, t) f(t) dt === g L e[ f(s—t)+ f(s+2)] dt,

for all positive values of «, and for all values of s which belong to the open interval

(0,7). In the paragraphs which immediately follow we shall obtain a more general
form for the right-hand member.
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§11. Let x; (¢) be a function of ¢ defined in an interval (0,7) (y > 0) which
possesses a limited derivative of the second order; further, let the function be such
that

xi(0)=0,  x:.(0)=1,
X1 (H)>0, (0=t=n).

We propose to prove that (& = 7)
P j e f(s—t) dt === p j e fls—xa O . . .. (22)

In the first place, we observe that, if # is any positive number less than unity
and p > 1, ,

o[ e sy | = pe [ £l = (0]
p* '
Since the right-hand member converges to zero as A tends to — oo, it follows that

of e fls—x ) di=zp e fls—x O] d. . . . . (23)
Again; by a known theorem of the differential calculus,

X1(t) =1+tx"1(h) (0 =¢t=n),

where ¢, is a point of the interval (0, ¢). Denoting by ¢ the upper limit of |y, (t)]
in (0, t) we see that :

Ixh () —1]|=ct.
Hence we have

o o

| 'f’j fe—”tf [s—xa ()]X (¢) dt—p fc“’tf [s=x (4)] dti =cp j “ e fls—x (8)]]¢ dt.

|

Since ple= = ¢,
for all values of p and ¢ which are not negative, the right-hand member is not greater
than « “ .

e [T s (018

and this, by a known property of Lebesgue integrals, converges|to zero as p tends
to . Referring to (28) we thus see that

a

pl e Fls=x (0] de ==z p e fls=xa (O] X (0) .

For values of p which are sufficiently great,

lpj’:‘(ﬁ)e""tf(s—t)dtISpa“’l""ﬁﬁl Fl=pldt, . . . . . (24)
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where

B=px <Z—>

When p increases indefinitely 8 clearly converges to « ; and therefore the right-hand
member of (24) converges to zero. It follows that

pj: ¢t f (s—t) di =% p [:‘G") e f (s—1) .

Substituting ¢ = y; (w) in the right-hand member, and then replacing w by ¢, we see
that this may be written

plevfls—tyar==p[ e fls—x ()] X, (0) .

J0 v 0
Taking this in conjunction with the result previously obtained, we see that (22) will

be established when it has been proved that

o o

Pﬁ P s—x ()] X1 () dti===p fe—px.mf [s—a ()] x4 () de. . . (25)

§12. We have

[ Pl 0013 (0 dimp e sy, (0] (1)

o

= pj""ewtl 1—e=rbaO=0] | fls—y, (] |xa () dt. . . (26)
0
Now, by a known theorem of the differential calculus,

xi () = t+30x"1 (1) (0 =t=1m),

where, as above, ¢, is a point of the interval (0, ¢).
From this we see that
Ixi(t)—t| =%ct? (0=t=n);.
and hence that '
| ]‘_e—Ple(t)—l]} = g’ _ ] (0 =t =< 7})_

Thus the right-hand member of (26) is

=" (p, 01/ Ts=0 (] 1 ()

where

P(p1) = pe (=) (0=1=%).
p
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§13. Let us now suppose n > %; then, for values of ¢ in \/ 0, %>, 1t is possible to
e

find a positive number such that, for all values of p which are greater than it, cpt?
is less than unity. For these values of p and ¢ we have

eéal’tg_l -s %Clptz 5
1 —§Cpt
and so
P(p,t)= 3¢ . pitle
T T 1—Lept? )
Since

p2t2(3—Pt < 46—'2
for values of p and ¢ which are not negative, we see from this that, for values of ¢ in
<O, %), P (p, t) is less than a fixed positive number P independent of p. We
p

therefore have

o[ e Ts=xa(01xa 0 dt=p[ e fTs=xa()] X (0 dt| <P [ | Ts=x (0] X3 () .

As the right-hand member converges to zero when p increases indefinitely, it
follows that the relation (25) is true ; and hence that -

pj:e"’”f(s—-t)dtT;___—Epj:e""’f[sfxl(t)]dt. L (22)

It may be shown in a similar way that

pj“e—ﬂf(m) dt mpjae‘Ptj'[s+x2(t)] d, . . . . . (@)
0 0
where y,(¢) is any function which has a limited second derivation in (0, %), and is
such that

X:(0)=10, x:(0)=1, x:(t)>0 (0=t=n)

It follows from the result obtained in § 10 that

| __)\j:KA(s, ). f(0)dt ==z 8 j:e—pt{ Fls=x O+ fIs+x O dt. . (28)

Let us denote

F O+ s +x (O}

where s is a fixed point of the open interval (0, ), by X (¢); and let us suppose, for
the moment, that X (+0) is finite. Then, if e is an arbitrarily assigned positive
number, we can choose & so small that
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for all values of ¢ in the interval (0, ). We have therefore

pj“e—pr( )czt<[X(+o)+e]pj e dt.
0
Since

lim p erds =1,

> w 0
we see from this that ’

T\ K, (5,1) £() dr = X (50) +e;
A —®
Or, as €18 arbitrarily small,

:lﬁf—)\j:K‘\(s, O F(Ode=X(F0). . . . . . . (29)
This inequality is obviously true when X (+0) has the improper value + oo,
provided that we interpret it as suggested in I, § 4 ; and the reader will be able to
prove that it also. holds when X (+0) is — . It follows that the inequality as
written above holds in all cases.
It may be shown in a similar way that

Tim )[R (s5 ) SO =X(+0) L (30)

A> —®

The function X (¢) depends upon x; (£), xs (£), and so X (+0) may have different values
when we replace these functions by others Satl‘;fym_g*the requirements of §§ 11, 12.
Let us denote by o (s) the lower limit of the set of values of X (+0) obtained by
taking all poqsibl(, pair‘s of functions y, (t), x2 (¢) ; and let w( ) be the uppel limit of' the
f(s) at the point s, and d of « co( ) as the lower bzlatemd lomat of f (s ) at this point.
When  (s) is equal to  (s), the common value will be veferred to as the bilateral limit
of f(s) at the point s, and will be denoted by o (s).

It will be obvious from (29) and (30) that

@(5) = Tim — xj (s ) F(O)dt= lim _xj (s, ) F()dt=w(s). . (31)

A — @ s

In particular, it will be clear that, when the bilateral hmlt of f(s) at the point s
exists,

lim ..xj:KA(s,t)f@)dc L (32

A= —

exists, and is equal to it.
From the inequality just written, and the definitions given above, we have

X(70)=o(s)=w()=X(+0). . . . . . . . (33)
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It follows that, if x, (¢), x2 (¢) can be chosen in such a way that
X (+0) = lm & { f[s—xa ()]+/ [s+x. ()]}

exists, then the bilateral limit of f(s) at the point s exists, and is equal to it. In
particular, the bilateral limit of f(s) exists at the point s, whenever

lim 3 [ f(s—2)+F (s+1)]
exists, -

§ 14. In the preceding paragraphs we have developed the theory of upper and
lower bilateral limits in a form which is adapted to our immediate requirements, but,
on reviewing §§ 11-13, the reader will find that, so far as concerns the definition of
these numbers and the fundamental inequality (33), f(s) may be any function which
has a Lebesgue integral i an interval (@, b), and s any point lying within this
interval. The definitions given are clearly applicable to the more general case, as
also are the relations (22) and (27). Choosing a fixed positive number A such that
a=s—A, b=s+A, the reader will easily prove that

B e L =t )] e 75 B [ oo [ (s=t) e (s 0) .

Hence (28) may be adapted for the more general case by substituting

DI et fls=t)f (s+0)) do

v

in place of the left-hand member. Proceeding as above, we then obtain

Y A
o(s)=Tim £ e (s =) 4 (s 1)]dt = lim £ e [ f(s=n+f(s+n]drza(s) (34)
p=o 20 ==2J00 —
in place of (31). It now follows that the fundamental inequality (83) is valid at
each point s of the open interval («, b). ‘

We may deduce from (33) an important property of functions which are integrable
in (@, b) in accordance with the definition of LeBrscus. For, from it, it will be clear

that when .
lim § {/[s=x ()]+/[s+x (O]}

exists at a point of the open interval (a, b), it has o value independent of x, (t) and
xz (¢), namely, the bilateral limit of f(s) at s.

It is not consonant with the plan of the present memoir to pursue this topic
further.

§15. We have now to consider the behaviour of

—xﬂ’ K, (s, ) £ (t) dt

VOL. CCXI.—A. U
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as \ tends to — o, when s is one of the end points of (0, 7); let us suppose, in the
first place, that s = 0. From the results obtained in §§ 8, 9, we see that

DY [ K, (0, ) £ (t) dt i=—= fﬁfﬁ [ ¢ £ (1) dt.

The right-hand member is
P U e (1) di+ [t () czt] :
JO Ja -

2 sinh pr
where a is any positive number less than, or equal to, m. Proceeding as in § 10, it

may be shown that
__Jge_ﬁi_. " —pt Ndt = 0
pf}»fZSinhpn"(ae S0 ’
and that

pe"” a—t . P — a—t. '+
Toh o [a o (t) dt T pLe o F(t) di.

Hence we obtain the result

Y jK (0, 8) £ (t) dt === p j:a-,,t o) du

From this it follows that

FO0)=Tim —)| K, (0,0) f(t)de= lim —\| K, (0,0) £(t) dt= f(0+0);

m ™
A2 - 0 JO

and, in particular, that

lim —xj: K, (0, ¢) £(£)dt = £(0+0),

A —w

whenever the right-hand member exists.
It may be shown in a similar way that

F(r—0)= Tim -xj:KA(W, £) £(t)dt= lim_ ——)\KKA (m, £) F(t) dt = f(m—0),

A —o A —

§ 16. It will be observed that so far we have been concerned with the limit (32) for
a fixed value of s, and that, in consequence, the question of uniform convergence has
been left aside. We now proceed to prove that :—

If the set of points at which f(s) is continuous includes a closed interval (v, d)
lying wholly within (0, w), then, as \ tends to — oo,

—X j K, (s, ?) (1) dt,

converges uniformly to f(s) wn this interval.

* Tt is evident that the restriction o =< may be removed, if we adopt the convention of § 10 in regard
to the definition of f(s) outside (0, =).
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We commence with the equation

—\ [ [K, (s, 8) =T, (s, )] f(£) dt = p [O T, (s,t) @ (p, s, £) £ (£) dt.

It was shown in § 8 that pI, (s, ) is limited, and that, as p tends to o, its limit is
zero for unequal values of s and . The function pT, (s, t) a(p, s, t) will therefore
satisfy the requirements of the theorem of I., §3, if it can be proved that pT (s, ¢)
converges uniformly to zero, for values of s and ¢ such that [¢—s| is not less than
an arbitrarily assigned positive number n. That this is so follows at once from the
inequality

) < cosh p (m—n) _
[I0N (s, t) = sinh prr (.t S[ > 1),
which the reader will establish without difficulty. We deduce that, as A tends
to — o,

-\ j (K, (s, )T (5, 0)]  (2) dt

converges uniformly to zero in (0, ).
Let us now suppose that » is any positive number less than the least of v, =—38.
Referring to the equation (15), it is evident that the left-hand member is less than

pesholm=n) [ () a,

sinh prr

for all values of s lying in (y, 8). It follows that (16) converges uniformly to zero in
(y,8). In the same manner it may be shown that (18) and the difference between
the left- and right-hand members of (19) both converge uniformly to zero in this
interval, for a fixed value of «.* Hence it appears that the difference between

p fo L(s0)f(t)dt  and P 5 e f(s—1) dt

converges uniformly to zero in (y, 8), as A tends to — o. Finally, since the same may
be proved of the difference between

pnor@a  wad B[ f(seryan,

we deduce that the difference between
-\ Jﬂ K, (s, 8) f(¢) dt and g ja e[ f(s—=t)+ f(s+t)] dt
0 0

converges uniformly to zero in (y, 8), as A tends to — co.

* We assume that o =< .
U2
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Now we. have

Pl LA (s=Of (s )] di=f () = £ [ [ fls=)+f(s+0) =2 ()] di—(s) e (35);

and, in virtue of our hypothesis as to the continuity of f(s),* it is easily shown that
« may be chosen small enough to ensure that

| f(sxt)=F(s)] <Le,

for all values of ¢ in (0, &), and for all values of s in (y, 8), the number e being positive
and arbitrarily assigned. With this choice of & the numerical value of the right-hand

member of (35) is less than )
Jerfm,

where fis the greatest value of |f(s)| in the interval. Hence, since this is less than
e for all values of p which are greater than a certain positive number, we see that
the left-hand member of (35) converges uniformly to zero, as A tends to — . It
follows from what was said above that, as \ tends to — oo,

—x[K (s, £) (1) di

converges uniformly to f(s) in (y, 3).
§ 17. Using the notation of § 3, we have (vide 11., 4)

MKl 07 (1) = 3 TR () [ (00 (0

It will be observed that the coefficient of
U (5) [ (0.7 (0)

on the right-hand side of this equation involves the corresponding singular value, and
that, in consequence, its value depends upon the function ¢ and the constants 2/, T,
The following lemma will enable us to replace the coefficient by another which is
independent of both the factors mentioned.

Lemma :—

Lf My Ny, oo Ny, onare in inereasing order of magnitude, the difference between

3 A () ond S e () - (60), (1)

n=1 Ny n:l(‘n

converges uniformly to zero, as \ tends to — oo, for all pairs of values of s and t lying
n the square 0 = s <, 0 <t =<m.

* To prevent misunderstanding, it may be stated that f(s) is continuous in (y, 8) and in addition

Fy-0)=rf@) FE+0)=/(3)
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For, with the hypothesis stated, there exists a finite number » such that

IN—(n—=1)<w, . . . . . . . . . (38)

for all values of n.* The ratio of the numerical values of the éorresponding terms of
(36) and (37) thus tends to unity as » is increased indefinitely. It follows that (37)
is absolutely convergent.

Again

S s )\D\n (77#—») s
2 R 0= 2 5 0 = 3 FAATIT g ) (a9),

For negative values of A the numerical values of the terms of tbe series on the right
are less than the corresponding terms of

[ ()41 (1)
2 RO

2] (8) 9 ()] =L () P+ ()T,
it is thus clear that, as A tends to — oo, the left-hand member of (39) will converge

uniformly to zero, if
2 [‘Pn( )]2+[‘I‘n t)y
n=1 }\ }\

Since we have:

has this property. But

O _ g
R wes gl SACR

e

and therefore steadily diminishes to zero as X tends to — .t It follows from Dint's
theorem that K, (s, s) converges uniformly to zero, for values of s in (0, 7). Hence
the left-hand member of (39) converges uniformly to zero in the square 0 =s =,
0 =¢ =, and the lemma is established.

§18. From this it appears that the difference between (36) and (37) satisfies the
requirements of the theorem of 1., § 3.  Hence the difference between

b 5\_;::-% ‘!’n (6) j: \Ifn (t) f(t) dt and nél (7;’-:_—.;_;\_2-:—7\ ‘lfn (3) j: ‘lln (t) f(t) de . (40)

n=1

converges to zero, as A tends to — oo, uniformly for values of s in (0, w). Tt follows
that the results obtained in §§ 13, 15, 16, remain true when

——)\[WKA(S, t) f(t)dt
v O
is replaced by (40). We have thus established the theorem :—

* Vide IV., § 5.
T “Functions of Positive and Negative Type and their Connection with the Theory of Integral
Equations,” ¢ Phil. Trans, Roy. Soc.,” A, vol. 209, pp, 443, 444,
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Let f(s) be any function which has a Lebesgue integral in the interval (0, w).  Let
Y1 (s), Y2 (8), -0y ¥ (8), ..., e the complete system of normal functions which, for
suttable values of ., satisfy the differential equation

d*u .
;Z:S‘? + ((]‘l",ll«).?/(/ =0
and the boundary conditions
du 4, du )
—— =D/ = at s =0, +Hu% =0 at s=m;
ds ds

Jurther, let the arrangement of these functions be such that the corresponding values
of w increase with w.  Then, as N tends to — o,

7L§1(7b~__{_)’;.__x¢7l(s)j:¢,L(t) FOd L 0)

converges to the bilateral limit of f(s) at each point of the open interval (0, w) where
this limit exists as a finite number ; moreover, at a point where the bilateral limat has
one of the improper values + oo, 1t diverges to this value and is non-oscillatory. If
the set of points at which f(s) vs continuous includes a closed interval lying within

(0, m), then (40) converges wniformly to f(s) wn this interval. At the end point 7(:,

(40) converges to ?Egigg, when this limit exists as a finite number; further, when

either of these lumits has one of the improper values + oo, (40) diverges to this value,
and is non-oscillatory at the corresponding end pount.
As a corollary to this theorem it should be observed that, when

lim [ F(5=0)+/(s+1)]

exists as a finite number at a point of the open interval (0, ), (40) converges to this
number (vide § 13).

The reader will recall that the system of normal functions ¥ (s), ¥z (8), vy P (8), ...
is unaltered when (2) is replaced by

% +(q+r+p)u =0

(vide § 3). There is therefore no necessity to suppose that the values of u referred to
in the enunciation of the above theorem are all positive.

§ 19. It will be convenient to state here how far the preceding results remain true
when the pair of boundary conditions for (a, b) is one of the three ,B, 'B, !B, and
hence that for (0, 7) is one of the three ,B, "B/, 7B’. In each case the asymptotic
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formula for K, (s, ¢) is of the same character as that obtained in §7. Thus, when the
pair of conditions for (0, i) is (B’, we have

e (s i (14 2D
KA(,t)_OFA(,t)<1+ b > AU t)

where (T, (s, t) is the symmetric function of s and ¢ which is such that

_ sinh ps. cosh p (m—t)
OF)\ (87 t) - P COSh pn' (S = t).

When the pair of conditions is "B/, the function T}, (s, £) in (41) must be replaced
by "I\ (s, t), where T, (s, t) is the symmetric function such that

- (9 ) = cosh ps sinh p (7—1) (s=0).% |
Y p cosh prm -

Finally, when the pair of boundary conditions is 7B, it will be seen that ,I', (s, ?)
must be replaced by I (s, £), where the latter function is symmetric and such that

i sinh ps sinh p (7w —t)
p sinh pr

(s, ) = (s=1).

From these formule it may be deduced that the results obtained in §§ 18, 16 are
still applicable. At the end point s =0, it will be found that the first of the
inequalities of § 15 is applicable when the boundary condition at this point is

du 4,
T h'w = 0.

When the boundary condition is « = 0, we have
K,(0,t)=0 (0=t=m),

and the inequality is no longer true, save under special circumstances. Corresponding
remarks apply to the end point s = =

The result obtained in §17 also requires modification. Using the same notation,
when the pair of boundary conditions is either (B, or "B/, the inequality (38) must be

replaced by |
e (n=B)") <

From this it may be shown that, in both cases, the difference between

niﬁ\[/n(s)l[/n(t), . (36

and
n§1 (_n—:_%))\z__—); ‘l’n (9) lp,l (t)

* The reader will perceive that this result may at once be deduced from the former one (¢f. § 6).
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converges uniformly to zero, as A tends to — o, for all pairs of values of s and ¢
lying in the square 0 =s =, 0 =t =m.
When the pair of boundary conditions is 7B/, (38) must be replaced by

])\71—%21 < v,

hence, in this case, the difference between (36) and

3 () ()

n=1

converges uniformly to zero.

The reader will observe that corresponding changes must be made in the enunciation
of the theorem of § 18.

§20. Let s (s), Pa(s), -ovy P (s), ... be a complete set of normal functions which

satisfy the differential equation
: d*u

e +(g+p)r =0,

and any one of the pairs of boundary conditions B/, (B, "B/, tB; further, let the order
of these functions be such that the corresponding singular values increase with 7.
Then, if f(s) is any function which has a Lebesgue integral in (0, ), the terms of
the series

() 9 (0 L@ (5) | () SO Aot () [ al0) F @) e (a2)

will have a definite order, and the coeflicients will each have a meaning. We shall
refer to (42) as a canonical Sturm-Liouville series corresponding to f(s).

Let s be any point of the open interval (0, ). Denoting by U (s) and L(s) the
upper and lower limits of indeterminacy of the series (42), the general theorem
of II., § 4, shows that

U (s) = lim —\ [ K, (s,£) £(t) dt = lim —\ ( K, (s, 1) £(t) dt = L (s).

A — >

A= —»

Also, by the results of §§ 13, 19 we have

o) = Tm =\ K, (5,0) £(0) de = Lim —\['K, (s,0) f () de = o (5)

A —® c 0 A> —® Y0

By supposing that o (s) = w (s), we obtain the theorem :—
1. If U (s) and L(s) are the upper and lower limits of indeterminacy at the point s
of one of the canonical Sturm-Liouville series corresponding to f(s), then

Us)=w(s)=L{s),

at each point where o (s), the dilateral limit of f(s), exists.
By supposing that U (s) = L (s), we see that :—
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II. The sum of a canonical Sturm-Liouwille series corresponding to f(s) at any
potnt where it converges lies between the upper and lower bilateral limits of f(s) at
the point.

Again, by taking the case in which U(s) = L(s), w(s) = (s), and the common
value 1s in each case finite, we have

111, At any point where the bilateral limit of f(s) exists as a finite number, no
canonical Sturm-Liouville sertes corresponding to f(s) can be convergent and have its
sum dafferent from this bilateral limit.  In particular, no canonical Sturm-Liouwville
series corresponding to f(s) can converge and have its sum different from

lim 3L f (s+0)+f(s~1))

at a povnt where this limat exists.

This theorem may, of course, be regarded as included in I. or II. Another
particular case which is worthy of remark is that in which U (s) = L(s) = + oo.
Since we can only have w(s) = + o at a point of infinite discontinuity of f(s), we
see that o

IV. A canonical Stuwrm-Liouville series corresponding to f(s) can only diverge to
+ o, or to — o, and be non-oscillatory at a point of infinite discontinuity of f( s).

Lastly, it is known® that |y, (s)| is less than a fixed positive number for all values
of n and s. From the result of II., § 7, we deduce that

V. At any point where the bilateral limit of f(s) exists as a finite number, each
camnonical Sturm-Liowville series corresponding to f(s) may be made to converge to
thes limait by the wntroduction of sutable brackets.

Different systems of bracketing may have to be employed at the various points of
(0, ), but, in virtue of results obtained later,t it will be seen that, at any particular
point s, the same system will suffice for each canonical Sturm-Liouville series.

It will be observed that the above theorems have been stated only for values of s
in the open interval (0, 7). After what has been said in §§ 15, 19, there will be no
difficulty in supplying the results which correspond to I.-V. when s is an end point
of the interval. It will be found that, if the boundary condition which is satisfied by
the normal function of the series is not u = 0, all the above results hold good for
s = 0, provided that we replace w(s) by f(0+0), o(s) by £(0+0), and w(s) by f(0+0
wherever necessary ; for example, corresponding to I., we have the inequality

U (0) = f(0+0) = L(0),
when f(s) is such that f(0+0) exists. It is unnecessary to consider the case when

* Of. IV, §6.

t It is shown in the following section that, as n tends to oo, the difference between the sums of the
first » terms of any two canonical Sturm-Liouville series converges to zero at each point of the open
interval (0, ). ,

VOL. CCXI.—A. X
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the normal functions of the series satisfy the boundary condition v = 0 at s = 0, for
we then have
U(0) =L(0) =0,

whatever be the nature of f(s). Similar remarks apply when s has the value .

§21. The theorems of the preceding paragraph apply to FOURIER'S sine and cosine
series, since the lattel are partleular Sturm-Liouville series. It is not difficult to
extend them to the FOURIER’S series

”l"r JS(t) dt+~smsf S )s1ntdt+—1—eos 9[ S(t) costdt

2y ™ -

o -

oot L sin s r S(t) sin nt dt+ L cos ns r f(t)cosnt dt+.... . (48)
7T o =T 7T

corresponding to a function f(s) which has a Lebesgue integral in (—m, #), The
series just written is clearly

51;; j: L&)+ f(=t)]dt+ %_sin s j: [ F(t)=f(=t)]sintdt
etk ;1r sinns‘[: [f (&)= f(—2)]sinn¢ dt + % cos nsJ:r [£(t)+/(—=1)] cos nt dt+....

Let us in the first place suppose that s is a point of the open interval (0,#). It is
known* that the difference between the sums of the first n terms of FOURIER'S sine
and cosine series corresponding to [ f(s)—f(—s)]| converges to zero, as n is increased
indefinitely. Hence the limits of indeterminacy of (43) are identical with those of

LA+ A=0 et - [ LAO=F (=01 dt+.ot Zeosns | [F0)=A(=0)] cosn e
e %cos ns j: [F(&)+f(=t)] cos nt dt+...;

and, therefore, in virtue of the fact that the n' term converges to zero as 7 tends
to o, with those of

w T s o
l{ f(@) olt+gcoss{ J@) cos £ dt 4 ...+ 2 cos ns { S (t)cosnt dt +....
aJo w <0 ka 0

Referring to the first inequality of § 20, we deduce from this that U (s) and L(s),
the upper and lower limits of indeterminacy of (43), satisfy the inequality

U(s)= lim _x[ (s, 1)./(0) dr = Jim —x[ T, (s, 2) £(t) dt = Li(s);

A —en A — %

* Vide TV., §§ 13-15.
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which may be written

U =Tim & | e[ fs—0)+ fle+0)]di=lim & B[ e [fls—t)+ fls+t)]db=L(s), (44)

P-)C/)

where o is any positive number (§10). It is here supposed that f(s) is defined
outside (—m, 7) in such a way that it has a Lebesgue integral in any finite interval.
In what follows we shall secure this by the rule

S (s+2m) = [ (s),

as in the theory of FOURIER'S series.

Again, when s lies in the open interval (—m, 0), we have s = —|s|, |s| being a
point of the open interval (0, 7). Proceeding as before, we now find that the limits
of indeterminacy of (43) are identical with those of

o | LA+ A (=00 dem o [T LA =A=0)] dtt .= L cosnls| [T LA =A(=1)] cosnt do
+}rcosn]s\ V [f()+f(=t)]cos ntdt—...;
<O
and hence with those of
1 (" 2 ol e : 2 oanlsl U7 A(— .
- J‘Of(—t)clt-%; cos | s| [Of( t) costdt+...+w cos 7| s| \Of( t) cos nt dt +....
It follows that, when s lies in the open interval (—m, 0),

U (s)=lim £ jc “{ST=Usl =01+ T=(ls] +0)]} de

p—)—oo

=lim j

whence it appears that (44) is valid for these values of s.
Lastly, at either of the points —m, 0, , it is evident that the limits of indeter-
minacy of (43) are identical with those of

)} dt = Ls),

1

[ AL @+r (=0t Zeos]s| [ HLA0+/ (=0 eos  de

+...+;2rcoqn| ]j L) +f(=2)] cos ntdt+..

Since

AT (0, 0L/ ()] de 5572 L [ et [0 (—0)] d

(§15), we at once deduce that (44) is valid when s = 0. Recalling that f(s) is
X2
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periodic, the reader will be able to prove that it is also valid when s has either of the
values —m, .

Now, if w(s) and (s) are the upper and lower bilateral limits of f(s) at any
point s, we have o

w(s) = Tim L je [ (s=0)+f (s+0)] de = Tim L [ e[ f(s—0) 1/ (s+0)] di = o (s)
pmoo 240 =2 —

(§ 14). Further, as it has been shown to hold for all values of s in the closed interval
(—m, 7), (44) holds for any value of s whatever. We are thus in a position to state
theorems, analogous to those numbered I.-V. in the preceding paragraph, on the
behaviour of the FoUurikR’'s seriés (438). For example, corresponding to III., we have
the theorem .

At any point where the bilateral limit of f(s) exists as a finite number, the
Fourier’s series corresponding to f(s), if it converges, has thus bilateral limit for its
sum. In particular, if the series converges at a point where

lim § [/ (s=1)-+/(s-+1)]

exists, then this limat ©s its sum.

We leave the reader to enunciate the other four theorems, merely remarking that
each of them is valid for unrestricted values of s.*

§ 22. From results which have been obtained above we may deduce theorems
concerned with the expansion of a function F (), which has a Lebesgue integral
in (a, b), as an infinite series of the type

) [ 9 () () T (@) dy+ v (a) | 9() W) F () y

b -
Fot 0, (@) | g V) F@) dy+os . .. (0T
where W, (z) is the solution of
d [, dv _
T <]c 3;:> +(gr—0)v =0,
which, for » = »,, satisfies one of the pairs of boundary conditions B, B, "B, !B. Itis

assumed that the functions W, (z) are made definite] by imposing upon them the
conditions

“bg[\lf,,(w)]zdw=1 (n=1,2,...), . . . . . . (46)

* These theorems are, of course, more general than those obtained by the methods of Frikr and
LuBESGUE (vide HoBSON, ¢ The Theory of Functions of a Real Variable,” pp. 707-714).

t It was explained in § 1 that ¢ is a function of 2; we employ ¢(y) to denote the same function with the
argument y instead of x.

I There is an ambiguity of sign which, however, is of no consequence.
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and that their order of arrangement is that in which 7, increases with n. With
this understanding we shall call (45) a Sturm-Liouwille series corresponding to F ().
Applying the transformation of § 2, we see that

€7 (gh)" W, (),

when expressed in terms of s, becomes a function, sa s), which satisfies the
. y n ’

equation
' d”+(q+p.)u_o. (@)

and the pair of boundary conditions B, \B, "B, §B’ which corresponds to the pair
satisfied by ¥, () : the appropriate value of w is evidently »,£7%  Since (46) leads to

ﬂwwﬁﬁ=1@=L&Q,

it is thus evident that s (s), ¥, (s), ..., P¥u (s), ... is the complete system of normal
functions satisfying (2) and these boundary conditions,
The series (45) becomes

B w0 @+ 2 [0 0@ Qs+ L N0 e dr .y 4)
where f(s) is F () expressed as a function of s, and w (s) has the meaning attached
to it in § 2.

§23. Let T(z) and A (x) be the upper and lower limits of indeterminacy of the
series (45) at the point «. These numbers are obviously the upper and lower limits
of indeterminacy of the series (47) at the corresponding point s of (0, ). From the
results of 11, § 4, we therefore have

T(x)=

1m,x§K@qujmm

(S))\-> )

()Agm;)\jo L (s, ) w(t) f(t) dt = A(w),

where K, (s, t) has the signification of § 4. Let us suppose for the moment that x is
a point of the open interval (@, ). After what was said in §§ 10, 11, 19, it will be
clear that

o

—7\5: K. (s, ) w(t)f(t)dtagj:nc_” [0 (s=0).f (s=0)+w (s+).f (s-+0)] de.
| Further, ' '
lpj:ue"ﬂt[w(s——t)*w(S)]f(S“") dt‘ Eeﬁldj:nlf(sat)ldt’

where d is the upper limit of |w/(s)| in (s, s+a).
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158 DR. J. MERCER: STURM-LIOUVILLE SERIES OF NORMAL

Hence

p jp“e”"” w(s—1) f(s—1t) dt === pw(s) ‘pne"’tf(s——t) dt.
0 J0
Since it can be proved in the same way that

p jp”e""‘ w(s+t) f(s+1)dt 75=== pw (s) (p"e""‘ S(s+1)dt,
0 40

we see that

w (2) j: Ki (s, 0) w(2) f(t) dt EE% f@”"‘ [f(s—t)+f(s+1)]dt,

that is to say
”_“““A_>_m—)\VK,\(s,t)f(t)dt.. S (48)
v 0

We have hitherto supposed that s is not one of the end points of (0, 7). When
this is so, the reader will be able to prove in a similar manner from the formule of
§§ 15, 19, that the result stated still holds. It follows that, for all values of
in (a, b),

T(z)=Tim -\ [:KA(S, ) £ () dt = lim ~xJ’:KA(s, D F)de=A(x).  (49)

A= —» A —®

§ 24. Let us again suppose that « is a point of the open interval (a, b). We
propose to show that the upper and lower bilateral limits of F (x) at « are the same
as the upper and lower bilateral limits of f(s) at the corresponding point s. For,

T oz 12
F(e) = f [g | <%> olx]
it follows that, if ¥, (£), x2(¢) are the functions defined in §§ 11, 12, we have

S F L= O+ Ts+x (O]} = £ {F 2= )+ F [+ @), . . (50)

where y = £7'%"%97"%, and the functions 9, (), 9, (y) ave defined by

since

2 N12 49,0 7\ L2
i) = £ 53()@) do,  xa() =€ (@) e o)
Since the functions ¢ and & are always positive and possess continuous derivatives
in (@, b), it is evident that these relations define 9, (y) and 9;(y) as functions of y
possessing limited second derivatives in a certain interval (0, £) ({ > 0). Further, we
have
9,(0) = 9,(0) =0,  9,(0)=9,(0)=1,

i@ >0, Y>>0 (0=y=)
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Denoting by Q (x) and Q(x) the upper and lower bilateral limits of F (x) at the
point 2, and employing the notation of § 13, it follows from (50) that

o(x)=0(), o(s)=0(@)

Again, if we commence with any two functions 9, (y), 9,(y) having the properties
above mentioned, it is easily seen that the relations (51) together with ¢ = &k™¢"?y
define y, (¢), xz (t) as functions of ¢ satisfying the requirements laid down in §§11, 12.

We now deduce from (50) the relations
w(s)=Q(), o(s)=0()

It follows that we must have

w(s) =Q(x), w(s) = Q(z). |

§ 25. From this result, and the inequalities established in § 13, we infer that

a@= lm -\ [ K (s,0) f(@)dt= lim - [h(s t) £(t) dt = 0 (x),

A> —® JO

at any point of the open interval (¢, b). Taken in conjunction with the inequalities
(49), these at once lead to theorems on the convergence of the general Sturm-
Liouville series, corresponding exactly to those numbered I.-V. in §20. We shall
therefore content ourselves with the enunciation of that corresponding to III. This
reads as follows :—

At any point where the bilateral limit of F (x) exists as a finite number, no Sturm-
Liouwlle series corresponding to F (x) can be convergent and have its sum different
Jrom this bilateral limit.  In particular, no Sturm-Liouville series corresponding to
F (x) can converge and have its sum different from

lim £[F (z—y) +F (z+7)]
y>0

at o povnt where this limit exusts.
As regards the end points of (@, b), we clearly have

F(a+0) = f(0+0), F(a+0) = f(0+0),
F(b-0)=f(x=0), F(b—-0)=f(z=0).

Hence, referring to the results of §§ 15, 19, we see that

Fla+0)= Tm —)\.{:KA(O, ) £ () dt = __l_i}}_l_—}\j.:K)\(O, t) £(t) dt = F (a+0),

A= — R

when the boundary condition at @ = « is

%—M):O;
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and that
F6—0)= Tim —\[ 'K, (m 1) /() de= lim —\['K, (n, ) /() dt = F (h-0)
> e
when the boundary condition at « = b is
ill% +Hv = 0.

From these inequalities, together with (49), we obtain theorems of the usual kind
relative to the behaviour of the general Sturm-Liouville series (45) at an end point of
(a, b). Thus, for example, when F (a¢+0) exists as a finite number, and the boundary
condition satisfied by the functions W, (x) at @ = @ is not v = 0, it will be found that,
if the Sturm-Liouville series converges at « = «, its sum must be F(a+0). When
the boundary condition satistied by the functions ¥, (x) at = @ is v = 0, the terms
of the series all vanish and no discussion of the convergence of the series at this point
is necessary. Similar remarks apply at the end point « = b.

§ 26. In conclusion, it should be observed that the theorem enunciated in § 18 may
be stated in a form applicable to the general Sturm-Liouville series. Let us suppose
that the functions ¥, (x) satisfy the pair of boundary conditions B, and, consequently,
that the normal functions s, (s) satisfy B’. By employing the transformation of §2
(¢f. §22), the reader will be able to establish that

,lzzl(n,_’:—i_?@j\q'n(x)ﬁg(?/)‘I’n(?/)F(y)dy, o (52
is equal to
. o
ol K ae@rd L (e)

Recalling the relation (48), it follows from the inequalities of the preceding paragraph
that, as \ tends to — o, (52) converges to O (x) at each point of the open interval
(a, b), that at the end point « it converges to F (a+0), and that at b it converges to
F (b—0); it being assumed in each case that the limit mentioned exists as a finite
number. Moreover, when any one of the limits Q(x), F (a+0), F(b—0) has an
improper value + oo, it is plain that (52) diverges to this value and is non-oscillatory
at the corresponding point of (@, b). Again, if the set of points at which F (x) is
continuous includes an interval (a,, b;) lying within (¢, b), the set of points at which
w(s) f(s) is continuous includes the corresponding interval of (0, w). It follows at
once from the theorem of § 16, that (53) converges uniformly to f(s) in the latter
interval ; and therefore that (52) converges uniformly to F (z) in (a,, b,).

We have thus established the theorem :—

Let ¥ (x) be any function which has « Lebesgue integral in the interval (a, b).  Let
Wy (), Wa(2), ... W, (x), ... be the solutions of

d [, dv ,
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whach, for suitable values of v satisfy the pair of boundary conditions

g—lﬂ-—/’w:O at « = aq, Cki—i»Hv:O at « = 0.
dix dx :

Moreover, let these soluttons be made definite by tmposing on them the conditions

ﬁg[‘l’,? (@Pde=1 (n=1,2.);

and let the arrangement of them be such that the corresponding values of r increase
with n.  Then, as \ tends to — o,

b
,, 2(‘:”]—?:‘1' @ 9D B FE@dy . (52)
converges to the bilateral limit of F (), at each point of the open interval (a, b) where
thus lamat exists as a _fintte number ; further, at a point where the bilateral limit has
one of the improper values + oo, it diverges to this value and is non-oscillatory — If
the set of points at which F (x) 1s continuous wnclude a closed interval lying within
(a0, D), then (52) converges uniformly to F (x) in this interval. At the end point

g (52) converges to :lg,((cgigg, when this limat exists as « finute number,; further, when

either of these lumits has one of the improper values 4 o, (52) diverges to this value
and 1s non-oscillatory at the corresponding end point.
From this we deduce the corollary that, when

lim {[F (x—y)+F (x+y)]
y>0

exists as a finite number at a point of the open interval (a, b), (52) converges to this
number. , '

After what was sald in § 25 there will be no difficulty in perceiving how the results
just stated must be modified when the pair of boundary conditions satisfied by the
functions ¥, (x) is ,B, ’B, or B.

IV.—TaE CONVERGENCE OF STURM-LIOUVILLE SERIES.

§ 1. In this section it is proposed to investigate the convergence of Sturm-Liouville
series. It will be recalled that with the notation of IIL, §§ 2, 8, ¥, (s) is a solution of

ﬁ+(q+p)u=0 R €Y
ds’ ’
which, for u = \,, satisfies the pair of boundary conditions B/, ¢.e.,
Dy = = du B = = 2), (3
T Wu=0 at s =0, and glg+Hu—Oats_7r, . (2), (3)

VOL. COXT.—A, Y
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Throughout this section we shall assume that the normal JSunctions s, (s) have such
an order that the corresponding singular values N, increase continually with n.
We proceed, in the first place, to obtain asymptotic formulee for ¢, (s) and \,, when

n is large. Let u be the solution of (1) which satisfies the conditions v = 1, % =h

at s = 0, when u has the positive value 7>. Since u satisfies the equation
D47 u = —qu,
it is evident that
u = ¢, co8 TS+, sin rs—[D?+77]7" qu,

where ¢; and ¢, are constants. Proceeding as in IIL, § 5, we thus see that
. 1 .
U = ¢ COS TS+Cy SIN 78— = q1u1 sin 7 (s—s,) dsy,
T/

where G, 1y ATO what ¢, u become when s, is substituted for s; and it is easily shown

!
that the conditions satisfied by » and % at s = 0 give =1, Cy = }—b-,
S T
as the appropriate values of the constants, It follows that
/ . 1 r .
U= Co8 T8+ — sin 78— = | gy, sin 7 (s—s)ds. . . . . . (4)
T T J0

Denoting by % the upper limit of |u| in the interval (0, ), we deduce from this

the 1 lit
e inequality h’2 .o
@ < > ;j lgu| dsy,

<1+ h/2>1/2{ 1 [ dsl}_l
T

It follows that for values of 7 whose lower limit is greater than V |qu| dsy, @ is less
JO

which may be written

than a fixed positive number. Using the notation of IIL, §6, we deduce from (4)

the formula o (1,5)
u = cos T8+ —22) (5)
T

The equation (4) may be written

% = COS TS <1 + lj QiU SIn 78, olsl) 4 on TS (h’ —_ j Q1 COS TS, olsl>.
TJ0 T 0

Supplying the value of u given by (5) on the right-hand side, we obtain

= COS T8 (1+ }“5 qu sin 78, cos 78, ds; + ﬂt%ﬁ)
. 7o T

. 1 s , S
+smq-s[;<h’—j0q1 coszfrslolsl>+.°_°_(;_)],, .. (6)
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§2. The solution % satisfies the boundary condition (2) by its definition. It is
easily seen from (4) that it will also satisfy the boundary condition (3) if

P
N 4

tan 77 =

where

T / 11,7 T / I4
P=NW+H - ( 1t <cos TS, — -}isinrsl> ds,, and P'= I—_I—-]i—-( ¢1th (sin 1-31+—I:I—cos TSI> ds,.
J0 T T 0 T

Using the formula (5), we see that

P=W+H —-jw ¢, cos® s ds;+ o (7) , P=- r ¢y sin 78 . cos 78, ds,+ ¢ (T).
0 T 0 T
Hence the equation (7) may be written

7_2

T \
tan 7r = 1 (h’+H’——-j q: cos® 78, olsl) +}f_(j)_.
T\ 0

It is easily seen from this that the large positive roots of (7) are of the form

W+H — "gl cos® ns, ds
1( ) : 1>+°‘7§f),. )

T, =N+ —
n T

where n is a positive integer.

It will be clear that a positive integer # may be chosen great enough to ensure that,
for n = @, the numbers 7, are roots of (7) which increase continually with n. Thus,
since (7) is the condition that there should be solutions of (1) satisfying B/,

2 2 2
T;, 'T;;+1 5 eeey Tn 3 s

are corresponding singular values arranged in increasing order of magnitude. It
follows that, for values of n which are not less than a certain positive integer,

Tnz - )\n.‘.m, . . . . . . . . . . . (9)

where m is a positive or negative integer, or zero. The paragraphs which immediately
follow will be devoted to the determination of m.
§ 3. Referring to §§5, 6 of the previous section, it will be seen that, by using (9)
and (10) we obtain
4i(s) =1+ ? fanh psS— 1 jqu cosh ps, sinh p (s—s,) ds, + ﬂf’;—s)
P p o P

cosh ps
Since f
2 cosh ps, sinh p (s—s,) = sinh ps+sinh p (s—2s,),
and
rql sinh p (s—2s,) ds, = a(p,s) ’
Jo cosh ps P
we have

L(s) =1+ % taph ps <h’——%rql dsd + ﬂ;f)’_;_s_) .
. 0 /

Y 2
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Hence
0, (s) = cosh pe (1 + x(p, 8)> = sinh ps <h j. T ols,> :
P p 0
Supplying this value of 6, (s) in the formula

¢, (s) = p sinh ps+4’ cosh ps—g ¢:0, (s1) cosh p (s—s,) dsl,
it is easily shown that

¢, (s) = p sinh ps+cosh ps <h/_~j g dsi+ (,; 3)>

By employing the device of IIL, § 6, it may be deduced from these results that

L ginh p(m—s) <H’_%V ¢ (;l.s'l> )

¢, (s) = cosh p (m—s) <1+ ‘f_%j_)) + B

and that
$u(s) = —p sinh p (m—s)—cosh p (m—s) (W~ [ s, ﬁ_(%ﬁl> |
Tt follows from these formule that
8 () = ¢ (s) O's (5) —0x (5) H'x (5)
= p sinh pw+cosh pmw <h +H -4 [ ¢ ds,+ gp)>

hence

h +H/—_«§ 1 (,Zbl a(p))

) ()\) = %pe’“’ (1 + P P2

Again we have

\ §
0,(s) br(s) = cosh ps cosh p (m—s) <1 + 5 )+ cosh p (m— ps) sinh ps <l -+ [0 ¢ dsl>

i = <H’ e

= 4 cosh pr+3 cosh p (m—2s)+4% Sm}; £7 <h’+ H' - [ T d81>

. _ | . -
+%S-~—~—mhpf()” 28)<H’-—h’+%‘[0%dsl—%L%olsl)+“(P’s)cos pf)ZCOShP(" s).

Since the integrals of the fourth and fifth terms between the limits 0 and # are

both of the form
a (p) cosh pmr
_ﬁm_l_oz____ ,
we see from this that

2 {6, (5) hu (5) ds = cosh p77<7r+ “ (§)> 4 sinhpr 7 sinh P"<}’+H’—~j ¢ d&) ,
g p p p



http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FUNCTIONS IN THE THEORY OF INTEGRAIL EQUATIONS. 165

which leads to

J H,—%‘ﬂld1
2((6,(5) () ds =T ?""(HH K S@mm).

P LI
§4. Let D (\) be the determinant of « (s, ¢), the GREEN’S function of
d*u
pE] +qu =10

for the boundary conditions B’. Then, in accordance with FREDHOLM'S theory, we
have

- log D (N)] = — ( K, (s, 5) ds.

Recalling that A = —p® we see from the equations (IIL, 6)‘ that

20 | 0, (s) by () ds
A og D (V] = ! Sh

hence, applying the formulee of the preceding paragraph,
log D (\)] = 7+ -+ (),

[ W] =7+ 2+ =35
Now let A () be the determmant of the GREENS function of

d?u

JE =0 (k<0), . .. ... .. (10)

for the boundary conditions

du du :
Ts at s=0, 75 =0 at s=m= (11)

From the result obtained above we see that
d 1 a(p)
—[log AN = o4+ = + ML,
7, g (V] 5T
Thus we have

ER

P

If N, = —p,® is any negative number, we obtain from this, by integration,* the
formula

d <10c, D 0\)> 2 (p)

Since the integral

tends to a finite limit as p tends to o, we thus see that, as \ tends to — oo, the
quotient D (\)[A (N) tends to o finste limit which is not zero.

* The function « (p) is evidently integrable.
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§ 5. The singular values of « (s, ¢) (ILL, § 8) being Ay, A, ..., A, ..., we have

D (A) = nI;[l <]~ %>’>X<

D(\) = "+ﬂ—1<1-;\\> 11~<1-3‘.5>,

n=1 n/ n=n Tn /

which may be written

where m has the signification of § 2, and 7 is any positive integer greater than 1—m,
which is such that (9) holds for n = 7. Again, the singular values of the GREEN’S
function of (10), for the boundary conditions (11), are the values of p for which there
exist solutions of

d*u

-+ u =0

g T (ktp)

satisfying these boundary conditions ; they are therefore —k, 1°—«k, 2°—«, ..., W’ —k, ....

Hence
\

Y d A A
M= 1 (1—-—2 )= S 1— .
a(d) n=1< (%-—1)2—K/) ;E1<1 ("n—-l)a—-x> nI___I,-,< n”—K>

It follows that

‘n’+ﬁ-—1 <1 )\>
DOV = pgy, 02
IT Kl——m———l\—é————>
el (’ﬂ/'—l) - K
where
A
P(\) = I —1—;’? = (1) (M (13)
B n=n 1— >\ B n=n 77/2_1('_)\ Tn2 ' ' . ‘
n'—k

Now from (8) we see that there exists a positive number » such that
|72 =0 <,

for all values of n=7#. TFrom this it is easily seen that
n2——1,72
H ]_ —
n=n < 7’&2— K—\ >

2
n" —K
II <>*7?#>
n=n Tn

are both convergent. Further, recalling that « is negative, we have

: n—k—17\ . , |n’—k—1, 2|> < v—K )
H{l—————>2 ) —1|= . 2 1= 1I — =1 (14
l —< ng—-x—)\> ’ ,E;(l + 0P — K-\ At n*—k—N\ (14)

and

P =N n=n

* «Tunctions of Positive and Negative Type and their Connection with the Theory of Integral
Equations,” ¢ Phil. Trans. Royal Society,” Series A, vol. 209, p. 445.
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V—K
n=n W

is convergent, we may choose a positive integer, n;, greater than 7, which is such
that

Since the product

I <1+V—;TK> < 1+ie,

and therefore that
II <1+ ———————~—> < l+ 7€,
n= =K\
for all negative values of \.
Also it is clear that we may choose a negative number A, whose numerical value is

so great that

m—l —Kk ) 1+4e
1I 1 V—K
,,=;< +n2-—-K-—-}\,) < 1+%’€

for A == A. Hence, for these values of A\, we have

. <1+._-><1+€
n—r—A\

Tt follows from (14) that =
—k—T1,7\

Im 1T <1-— P )

A —wn=1n
and therefore from (13) that, as A tends to — oo, P (M) tends to a finite limit different
from zero. ‘

Since P (X\) and D (\)/A (M) both tend to finite limits different from zero, as \ tends
to — oo, 1t 18 obvious from (12) that
ﬁ+ﬁ—1 <1 _ A>
A

n=1

lim — n’
A> —® n <] _ )\ A >
n=1\ (7?/_1)3—K

must be finite and different from zero. As this can only be the case when the number
of factors in the numerator is equal to the number in the denominator, it is evident
that m = 1.* Hence from (9) we have

An+1 = Tng. . . . N . . . . . B . (15)

As a corollary we deduce from (8) the inequality
[—

which was employed in IT1., § 17. This is primarily true for n greater than 7, but, by
a suitable choice of », it is evidently valid for all values of n.

* Previous investigators seem to have overlooked the fact that the value of m is not obvious. They
have all tacitly assumed m = 0.
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§ 6. It follows from (8) and (15) that the large singular values of «(s,t) may be
calculated from the asymptotic formula

1 (/z/ +H — ‘U ¢y cos® ms, dsl>

7

e
n

'\/)‘n+1 =7, = N+

W

We proceed to obtain an asymptotic .formula for i, (s), the normal function
corresponding to A, ~

Let u, denote the function which « (§1) becomes when 7, is substituted for = ; then,
from the definition of 7,, it is clear that u, satisfies the paif of boundary conditions B,
The normal function v, (s) must therefore be a constant multiple of u,; hence, since

r [Y41(s)F ds = 1, we must have
v 0

Y 1))

Y1 (8) = /\/j,, it ds

0

Now, from (6),

1 . a(7,,$s . 1 [ \ a1, s
U, = COST,S <1 +—| ¢8I0 7,8, C087,$; dsl+—(—ii;——) +sinr,s| —( A/ — \ 0 COS2T7L81(181) + ( = ) ,
7. ) T / Ta\ J0 T,

e 0 n

while from (8) we see that

9 3

- 7 'n- Y \
W +H — { 1 co8” 115, ds‘) a (n)
0
+ —

s J
K\

AY
a(n .
coS 7,8 = cosns | 1+ —~(—2—))-—sm ns
w w n

with an analogous formula for sin r,s. It follows that

1 s . o\, s ‘
u, = cos ns<1 + - ¢y sin 7s; cos ns, ds, -+ "“'““‘( 2 >>
. n

+ sin ns F <h"' 20+ H')“j g cos” ns, s+ [ 1 cos® 18y dsl> +2 (n; S)rl
n m 0 ) o

0

From the formula just written we see that

o (i, §)

(4,—cos ns)’ = p

Integrating between the limits 0 and =, it will be found that this leads to

f u,fds::z( uncosnsds—‘erﬁ—(g«). N eV
Jo Jo 2 '
The function 2u, cos ns 1s of the form

: 1 o (n,s)

1 . .
2 cos’ ns+ ;—;j‘ ¢y 8 s, cos ns; ds; + = [B: (n, s) cos 2ns+ Bz (n, s) sin 2ns] + pr it
0

where B3, (n,s) and B, (n, s) are functions of n and s whose derivatives with respect to
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s are both of the form a(n,s) in (0,7). By an application of the rule of integration
by parts, it is easily seen that

r B (1, s) cos 2ns ds = ﬁ%@, J Bz (n, s) sin 2ns ds = (n).

Thus we have

o n
2] U, COS NS = T+ — j ds, j 1 SIn 1Sy o8 NS, ds,+ 7(} ),
0

which, taken in conjunction with (17), leads to

j unz ds = 71 l [ d82 J ql Sln 78, COS NSy dsl = (l);,)'
0 2 n &

Substituting the positive square root of this value of j” u,> ds, and the value of u,

. . 0 .
obtained above, in the right-hand member of (16), we eventually obtain the formula*

Yoi1 (5) = /\/g [cos ns(l + AI(?:&’ ) + a(:i,zs)> + sin ns <A(s)+;&2(n, s) a(n, S)>] (18)

where
As) =1 [(77 9 <h 4[4 dsl> <H’—%— [[a ds>]

A, (n,s) = ———j dszj ¢1 sin 2ns; ds;,

and

A;(n,s) = —2—1; [ j ¢ cos 2ns; ds;— (m—s) [ ¢, cos 2ns, dsl:l

Putting in evidence the argument of ¢ as in IIL, §6, the reader will see that
Y41 (8) 18 the normal function which, for u = \,4,, satisfies the equation
dPu '
g7 Tla(m=s)+plu =0,
and the boundary conditions

du
ds

du
ds
It follows that A, (7, s) should remain unaltered when we interchange 4’ and H’, and
at the same time substitute w—s for s, ¢ (m—s,) for ¢ (s,); also that A (s), A,(n,s)
should merely change sign. We have expressed A (s), A;(n,s), A;(n, 5) i forms

—Hu=0 at s=0, +hu=0 at s=m.

designed to show that they possess these properties.

% It should be observed that there is an ambiguity of sign in the determination of each normal

function (vide IIL., §3). By substituting the positive value of V J: up?ds in (16) we obtain the

asymptotic formula for that determination of .1 (s) which is positive for s = 0. Substituting the
negative value of the square root in (16) we obtain the formula for the other determination. This would
have served our purpose just as well as (18).

VOL. COXI.—A. V/
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§ 7. The formula (18) is true for all values of n which are greater than, or equal to,
a certain positive integer, say N. Let G (s, £, #) denote the sum

n

p3 <lllm+1 (8) Yt (£)— 2 cos ms 008 mt> ;
N w

then we see from (18) that

2 T ogin ms cos mi 4 % cos ms sin mt
G(s,t,n) = ZA(s) S SIS COBME L2y (py 5 CO8 ™S sin b
(i3 m=N m o m=N m

L2 03 {cos ms cos mt [ Ay (m, s) + A (m, t)] + sin ms cos mtA., (m, s)
T m=N m m

|, cos ms sin mtA, (m, t) + (m, s, t)}
. m My '
Now the sum

n

3 sin mz
m=1 m

is known® to be limited for all values of z and all positive integral values of = ;
further, as n tends to oo, this sum converges uniformly for values of z lying in the
closed intervals complementary to the set (2mm—7, 2ma+y) (m =0, +1, £2, ...),
where 7 is any assigned positive number. It follows at once that the sum

% sin ms cos mt
m=N m
being equal to .
« 4 Z sinm(s+t) 4 % sinm(s—t)
¥ 3 4L 5
m=N m m=N m

2

is limited for 0 <=s=w, 0 =t=w, n=N; and that, as n tends to o, it converges
uniformly in those parts of the square 0 <s=w, 0=t=m, which correspond
to [¢—s|=n. It is easily seen that

g cos ms sin mi

] m =N m
has the same property.
Again,
s cosms cos mt A, (m, s) R 1)
m=N m
may be written
. 1 T S
. ero ds, [ g(s,ts,n)qudsy, . . . . . . . (20)

where

n :
CcoS ms cos mit Sin 2ms;
g(s,t,s,n)= % .

m=N m

* Tor a full discussion, see HoBSON, ¢ The Theory of Functions of a Real Variable,” pp. 648-643.
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Evidently

n 1 n 3 .
g (s, t,sl,n)_—_-};{ 3 s1nm(281+s+t)+ 3 sin m (28, —s+1)

m=N m m=N m

LS sinm(231+s—t)+ 3 sinm(2sl—s—t)}.
m=N m m=N m

From the remarks made above, it will be seen that ¢ (s, ¢, s, #) is limited for

A A

OF

A

OF

0=s=n0=<t=<mw 0=<s = and n =N ; moreover, if
9 (s, t,8) = lim g (s, ¢, s, n),
n > »n
g (s, t, 81, m) converges uniformly to” ¢ (s, ¢, s;) for those values of s, ¢, s,, which satisfy
the conditions ' .
stbot iz, |stlston|zn,
and
si—3s—ft+m =7
Applying a result obtained in I., § 4, we see that, as n tends to oo, (20) converges
pplying g
uniformly for 0 =s ==, 0 =t ==; and hence that (19) converges uniformly for these
values of s and ¢. It may be proved in a similar way that
§ cos ms cos mt¢ A, (m, t)
m=N m
converges uniformly for 0 = s =, 0 =t =m.

§8. We have

3 sin ms cos mt Ay (m,s) _ 1 " d 3 (7, d '
RN — =515 0 (s,t, 81, m) g1 ds;—(m—s) . (8,t, 81, m)quds, b (21),
where

h(s, t, 51, m) = %j 3 sin m (28,4 s+1) LS sin m (28,4 s—1)
].m =N m m=N m
_ sin m (231-—/s+t) _ s sin m (231—3—15)}
m=N m m = N m ’

It is easily seen that 4 (s, ¢, s, n), like g (s, ¢, s,, n), satisfies the requirements of the
theorem of L, §4; and hence, from the remarks made at the end of this paragraph,
that the left-hand member of (21) converges uniformly for 0 =s==, 0st=s It
may be shown in a similar way that

3 cosms sin mé A, (m, ¢)
‘m=N m
has the same property.
zZ 2
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Lastly, it is at once evident that, as n tends to o,

;: o ('m,, s, t)
m=Nx  m
converges uniformly for 0 =s=#7, 0=t=m.
As a result of the investigations of this paragraph, we now see that G (s, ¢, n) is
limited for 0 =s=#, 0=t=m, n=N; and that, as n tends to oo, it converges
uniformly in those parts of the square 0 =s=u, 0=<t=m, which correspond
to [t—s|=n.
Consider the function

H (s, ¢, n) = ¢ (s) ¥ (t):-—%—_ + 1):2; 1 <¢m+1 (8) Y (8)— %cos ms cos mt> .

For values of n =N, it differs from G (s, ¢, n) by
1 N-1 2
P (8) Y ()= -t ) <\llm+1 (8) P (8)— - cos ms Co8 mt> .
m=1

We conclude that H (s, ¢, n) is limited for 0 =s==, 0=t=<m, n =N ; and that,
as n tends to oo, it converges uniformly in those parts of the square 0 =s =,
0 =t = which correspond to |¢{—s|=7%. We proceed now to show that, when t#s,

lim H (s, ¢, n) = 0.

n-=>x

§ 9. The normal functions which satisfy the differential equation

d?u
@ n =
T F(A+p)u =0,
and the boundary conditions
du _a du _ _ '
a;—Oa,ts—O, a—g—Oats—w. oo o (1)

are clearly 5 _ _
/\/ 1 /\/ 2 /\/ 2 V§
=, = Co8 8, —cos 2s, ..., = COSMNS, ..y
w m o w
the corresponding values of u being
-\, 12—\, 22—\, ..., @i\,

Thus (ITIL, § 3) the GREEN'S function of the equation

d?u

JS—2-+)\M:O, S (22)

which corresponds to the boundary conditions (11) is

1 p3 1 gcosnscosnt
M a1 2=\ w ’
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du

Again the solution of (22) which satisfies the conditions u =1, 75 = 0,at s = 01s

cos v/As ; and the solution which satisfies the conditions u = 1, a—? =0,at s =18

cos /X (w—s). It follows (¢f. IIL, § 4) that the GREEN'S function of (22) which
corresponds to the boundary conditions (11) is

_cos«/Xs.cos\/X(w-—t)(q<t) _cos v/At. cos v/X(m—s)
v/ Nsin /N T V' Asin v/ \ar

Comparing this with the formula obtained in IIL., § 7, we see that, as A = —p? the
GREEN's function is T, (s, ¢).
Thus we have

(8>t)

T, (s,¢) = —x—l; + nEl n%— %cos ns cos nt.

From the lemma of III., § 17, we see that

MK, (5, ) === 3 1)2 ey Ve (9) ¥ (),

or
Py 1[11 (S) lpl (t)+ 2 ‘/’n+1 (.S‘) ‘pnﬂ (t)

Hence, using the result obtained above,

MK (50T (5, ] 575 () () 2

+ 2 = >\)\<1,,n+1(3) \J;,,H(t)——cos ns cos nt> .. (23)

Now, when s # ¢, the series
¥ (s) ¥ (8)— Lis (1]/“1(3) Yor (8)— 2 cos s cos nt>
o n=1 k) ) ) )

has been shown to be convergent (§8). It follows by an argument similar .to that
employed in IL, §§ 3, 4, that, as A tends to — o, the right-hand member of (23)
converges to the sum of this series, that is to say to

lim H (s, ¢, n).
Further, the left-hand member is |
pTs (5, 2) a(p, s, t),

which, for unequal values of s and ¢, has been shown to converge to the limit zero, as
p tends to o« (III., § 8). It follows that

lim H(s,t,n) =0 (s#¢).
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§10. Let f(s) be any function which possesses a Lebesgue integral in (0, m).
Recalling the properties of H (s, ¢, n) which have been proved in the preceding
paragraphs, we see from the theorem of L., § 3, that, as n tends to oo,

(OH (s,4,) f(t) dt

converges uniformly to zero for all values of s in (0,7). Denoting by o, (s) the sum
of the first n terms of the series

b (5) [0 O SO A+ ) [ @) F O dtt oot (@) [ a0 @) Aty o (24)
and by s, (s) the sum of the first n terms of

%_j:f(t) dt+ %cos $ [:f(t) cos tdt+.._.+%cos (n—1)s { f(¢)cos (n—1)edt+..., (25)*

i
<0

it follows that, as » tends to o,

o, (8)=s. (3)

converges uniformly to zero, for all values of s in (0, 7).
If D (s) is any limiting point of the set

a1 (8), 02(8), ooy 0 (8)y ooy . . o oL (26)
we can select an increasing sequence of integers n,, My, g, ..., Ny, ..., in such a way
that the sequence ‘

Tn, (8), 04, (8), ooy 00, (8), wvny

tends to the limit D (s). It’ follows from the result obtained above that the sequence

$u, () Sy (8)s w05 S (8), oo

also tends to the limit D (s). We have thus proved that each limiting point of the
set (26) is also a limiting point of the set '

s1(8), 2(8), +oos su(8)s +ovs

in particular, the upper and lower limits of indeterminacy of the two series are
identical. It should be observed that this includes the result that, if either of the
series (24), (25) is convergent, so also is the other.

Since
o, (8)—s.(s)
converges uniformly to zero in the whole of (0, ), we see that, i either of the series

* This is, of course, FOURIER’S cosine series corresponding to f(s).
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(24), (25) converges uniformly in a certain set of points belonging to the interval
(0, ), so also does the other.

§11. Let us next suppose that the pair of boundary condltlons for the interval
(0, m) is (B In this case it may be shown that

o=

[q;m( ) (£) — —-sm (m—1%) s sin (m—1%) t] oo (27

is limited for 0 =s ==, 0 =¢ =, and all positive integral values of = ; and that,
as n tends to oo, it converges uniformly in those parts of the square 0 =s =,
0 =<¢ =, which correspond to |t—s|==. It will be found that the normal functions
which satisfy the differential equation

du+()\+,u.)u—0
and the boundary conditions
du '
u=0 at s=0, SZ=0 at s=m . . . . . (28)

are B B

2 i gs, A/ Zein A/Z sin

Z sin &s, Zsin s, ..., 25 —-Ls, ...,

/\/7; b = sin §s = sin (n—%)s

the corresponding values of u being

@'=N E)P=N o (n—g)' =)

The GreEN’S function of

‘jlfa-xu_o..........(?,z)

for the boundary conditions (28), will be found to be ,I', (s,¢). Hence
T (s, 8) = »——J—«—— 2 sin (n—%)s sin (n—%) ¢
n= l (n——‘)2 w 2 2/

It follows from this and the result quoted in IIL, § 19, that

— -\ 2 . . \
MK ) =T ] 222 3 o <¢,, (5) . ()= Z sin (n=4) s sin (n—3) 1.
Since the results quoted in that paragraph may be shown to lead to

lim —\[K,(s,2) =0\ (s, £)] = lim p T\ (s, £) 2 (p, s,£) = 0,
A>o0

A>—w

we prove from this, by the method employed in § 9, that, for unequal values of s and ¢,
(27) converges to the limit zero, as n tends to oo.
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Employing o, (s) with the signification of the preceding paragraph, and denoting
by s, (5) the sum of the first # terms of the series

2 sin gs | () sin g de+ 2 sin g5 [ £(0) sin 3¢ e
w Jo T 0
toet Zsin (n—g)s | f(@)sin (n—f) e, . (20)
0

we deduce at once that, as n tends to oo,

o ($) —osa ()
converges uniformly to zero on the whole of (0, 7). The corollaries to this result are
of the same nature as those stated in § 10, the only difference is that s, (s) replaces
s.(s), and (29) the series (25).
§ 12. We shall state the corresponding results when the pair of boundary conditions
is ", or 7B/, more briefly. In the case of the pair "B’ it will be found that (27) must
be replaced by

n o
p> (tpm (8) Y (2) — = cos (m—%) s cos (m—3) t). ... . (80)

m=1 T /

Replacing the boundary conditions (28) by
@=O at s =0, =0 at s=m,
ds
it may be established that
1 2 .
T, (s, ) = nélm = cos (n—%)scos(n—%)t;

whence, in virtue of the results quoted in IIL, § 19, it may be shown that (30)
converges to zero, for unequal values of s and ¢.* Finally, if "s,(s) is employed to
denote the sum of the first n terms of the series

7—21_ cos s rf(t) cos 3t dt+ 2 cos 3s rf(t) cos St dt
0 o 0
ook 2 cos (n—%—)sj"f(t) cos (n—§) tdi+..., . (31)
m 0
we obtain the result that, as »n tends to oo,
7. (8) =75, ()
converges uniformly to zero in the interval (0, ).

~* This may be deduced from the corresponding result obtained in the preceding paragraph. For, if

¥ (s) is the normal function which, for p = Ay, satisfies
d*u
gz T @rmu =0
and the pair of boundary conditions =B, then, for the same value of p, ¥ (7 - 5) satisfies this équation and

a pair of boundary conditions of the same type as oB'.
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When the pair of boundary conditions for (0, #) is 7B/, (27) must be replaced by

m=1

s <¢m (8) ¥ (2) — 2 Sin ms sin mt). oo (32)
: T
The GrEEN’s function of (22) for the boundary conditions

w=0 at s=0, =0 at s=m,
will be found to be

(8, 1) = El nzl—x 7—27 sin ns sin nt,
from which it is easily proved that, as n tends to o, (32) converges to zero for
unequal values of s and z. We deduce that, if Is, (s) is the sum of the first n terms
of the series

2 Gn sj"f(t) sin ¢ dt+ 2 sin 2.s~j"f(t) sin 2t dt+ ...+ 2 sin nsj"f(r,) sinntdt+..., . (83)*
T 0 ar 0 T 0 .
then, as n tends to oo,

2 (8) = Tsu (5)

converges uniformly to zero in the interval (0, =).

§13. We proceed to investigate the behaviour of the differences between the
various pairs of sums which we have denoted by s, (s), o5, ($), ™. (s), and 7s, (s), as n
tends to co. The reader will easily prove that these sums are

6 (5) = 1 rf(t) [sin £ (2n—1) (s—¢) + sin £ (2n—1) (s+t)] dt,

2ar Jo sin 4 (s—¢) sin 4 (s+¢)

5 (5) = 1 ‘:f(t) [sin n(s—t) sinmn (s+t):| dt,

sin & (s—¢t) sin (s+¢)

[:f(t) l:sin%(s—t) + sinn(s+t)] i,

sin % (s—¢)  sin & (s+¢)

¥~

5. (8) = ;;Tj:f (¥) [Sin il(j 7_;:{(-81_) g_t) — %sfxf 7;(-81—2 SH t)] o

Let us define a function f, (s) for all values of s by the rules
' Si(s)=f(s) (0=s=m), =0 (—7<s<0),
Si(s+2m) = fi(s);
and a function f;(s) by the rules
So(8)=f(s) (0=s=m), =0 (—7<s5<0),
Ja(s+2m) = — f,(s).

* This is, of course, FOURIER’S sine series corresponding to f(s).
VOL. COXI.—A. 2 A
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Let I,, (s) denote the value of

rf(t) sin m (s+t) dt,

sin & (s+¢)

for integral values of m. It is easily seen that

a0 [ A,

Substituting s+¢ = w, and then replacing w by ¢, we obtain

w+s
| PR (s) = [_(T_S)ﬁ ( s+t) w dt,

which, owing to the periodicity of f; (s), leads to

g ini(2n+1)¢
| P (S) = j_"fl (""S+t) Sln____ZSi(ng_:‘ML dt ;

hence we have

L (9) = [ LA (=s=) + fi(—sr)) 2B D g,

5t

In a similar way it may be proved that

m@—jmevoww«mW”t L (39)

sin it

Let us now suppose that s is a point of an interval (y, 8) lying wholly within (0, 7) ;
and let a be a positive number less than both y and #—8. We have

fi(=s=t) =fi(=s+t) =0 (y=s=8, 0=t=a)

L (8) = j [fi(msmt)+f, (—s+ 1) B2 @t 1) gy

sin &t

Thus

Since, by a known theorem,* the right-hand member converges uniformly to zero
as n tends to oo, it follows that I, (s) converges uniformly to zero in the interval
(y,8). It may be shown in a similar way, by using (34), that I,, (s) has the same

property.
§14. Let I, (s) be the value of

fromirt=da

s

* Vide 11., § 6.
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By employing the method of the preceding paragraph, and using the substitution
t—s = w instead of s+¢ = w, it may be shown that

Vs () = [ LA (=) 43 s+0)] S_lll_z_(?ﬁﬂ)_‘dt

Vo (s) = [ Lfsls=0)+fs(s+0)] S22
With the same convention as to the values of s and «, it is easily shown that

Fils=1) = fals=1) = f(5—1)

(y=s=9§ 0=t=a)
Si(s+t) = fo(s+t) = f(s+2).

Hence

I/2;+1 (8)“"1’27, (8) — j: Lf.(s-‘”t) +'j' (3+t)] S]Il 5 (Zn+ ].)t Slll nt dt ’

sin ¢

# [ LA =0 o) D e [ £ (5= (540 02
The first integral on the right-hand side of this equation is

j [f(s—t)+f (s+8)] <2 ('"’+7f)tclt,

cos 1t
which may be written

L [f(s—t)+f(s+2)] cos nt dt — 50 [f(s—t)+f(s+t)] tan ¢t sin nt dt ;

hence, applying the first corollary of IL, § 9, we see that it converges uniformly to
zero, for values of s in (y, §). Since the two other integrals have this property in
virtue of the same corollary, we conclude that, as n tends to oo,

Vpin (3) =, (*5)

converges uniformly to zero, for values of s in (y, 8). As a corollary we deduce that

I/2n+2 (8)'—1,214 (8)
has the same property.
§ 15. Referring to the formule of §13, it is evident that

52 (5) = g2 W (94T ()] 050 (6) = 5= [V (5) =Tan (5}

Hence
50 ()05 (5) = - {[Tiowes (5) = (5)]+ Tvcs (8)+ I ()}
2 A2
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As each of the three terms within the bracket has been shown to converge uniformly
to zero in (y, 8), it follows that, as n tends to o, the difference

Su (8) =054 ()

converges uniformly to zero for values of s in (y, ). It may be shown in the same
way that each of the differences

i (5)="sn(s), su(8)=0sa(s)s
has the same property.

Since (y, 8) is any interval lying within (0, ), it follows that, as # tends to o, the
difference between any two of the sums s, (s), o5, (), s, (5), 75, (8), converges to zero at
each point of the open interval (0,#). It remains to consider the end points of the
interval. At s = 0 we have

9n(0)=;71-1{:f(t)$ln.%_(_%jﬂ dt, n(o)___j'f()smnt i,

sin ¢ sin 44

and, of course,
’ oSn (O) ogn (O) = O

From the first two formulse we obtain

N 1(r sin nt—sin & (2n—1) ¢
$(0) =5, (0) = ;jo 40k smzlzg ) dt

j J(t) cos nt dt+ =~ j‘ J(¢) tan 3¢ sin nt dt.

As both f(¢) and f(t) tan ¢ possess Lebesgue integrals in (0, ), the integrals on
the right converge to zero, as n tends to «.* We thus see that

lim [s, (0)—s, (0)] = 0.

7 == 0

In a similar way it may be shown that

lim [y, (m)—=s. (m)] = 0,
whilst

. (‘”) 05 (77) =0,
for all values of n.

After what was said in the corresponding case dealt with in §10, the reader will
perceive the bearing of the results of this paragraph upon the convergence of the four
trigonometric series (25), (29), (31), and (33).

§16. The reader is now asked to review the results which have been obtained
above. It was shown in §§ 10-12 that the limits of indeterminacy of any canonical

* 1L, § 6.


http://rsta.royalsocietypublishing.org/

a
J,
A

/—%

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FUNCTIONS IN THE THEORY OF INTEGRAL EQUATIONS. 181

Sturm-Liouville series corresponding to f(s) are identical with those of one of the four

series v
1 ™ 2 0 2 ™ .
—~ [ f(t)dt+—cossjf(t)costolt+...+—cos(n-—l)sj f(t)cos(n—1)¢dt+..., . (25)
o T 0 T Jo

2 gin 1s jw S(t)sin it de+ 2 gin 38 jwf (t) sin §¢ de
w 0 m 0

+...+;2-Tsin(n—%)sj"f(t)sin(n-%)tdw..., . (29)
0

72’; cos §s rf (¢) cos 3¢ de+ 2 cos 3s jw S (¢) cos 3¢ i
0 T 0

+...+?cos(n—%)sj"f(c)cos(n—%)tdpr..., . (31)

m™ 0

%sinsrf(t)sintolt+gsin28jﬂf(t)sin2tdt+...+gsinnsjrf(t)sinntdt-i—..., (33)
0 m 0 o™ 0

at each point of the closed interval (0,#). It was then shown in {§ 13-15 that, at
each point of the open interval (0, 7), each of these four series has the same limits of
indeterminacy. We have therefore established the following theorem :—

I A4t any pownt of the open wnterval (0, w) each of the canomcal Sturm-Liouville
series corresponding to an assigned function which is integrable in (0, w) in accordance
with LEBESGUE'S definition has the same limats of indeterminacy.

In particular we have :—

IL. If any one of the canonical Sturm-Liouville series corresponding to the function
converges at a point of the open interval (0, ), then all of them converge at this point,
and all have the same sum.

It was shown in §§ 10, 12, that, at the end point s = 0, all canonical Sturm-Liouville
series whose normal functions satisfy B’ have the same limits of indeterminacy as
(25), and that those whose normal functions satisfy "B’ have the same limits of
indeterminacy as (31) at this point. Then, in §15, we proved that (25) and (31)
have the same limits of indeterminacy at s = 0. Since similar remarks apply to the
end point s = m, we have the theorem :—

II1. AUl those canonical Sturm-Liouville series corresponding to the function, whose

, . . .. S$ = 0 .
normal functions do not satisfy the boundary condition uw = 0 at <= hawe the same

lvmats of indeterminacy ot Z : 7?_

In particular, the reader will observe that, if one of the series mentioned converges
at an end point, all do so.

Lastly, if the reader will examine the results obtained in §§ 10-15, he will find that
we have established the theorem :—

IV. If any one of the canomical Sturm-Liouwville series corresponding to the
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asstgned function converges wiaformly wn « set of points which, together with its
limating points, 1s contarned within (0, ), then all of these series converge uniformly
un the set. :

The results obtained in §§ 10-13 show that, if any one of the canonical Sturm-
Liouville series corresponding to the function converges uniformly in any set of points
of (0,7), then all of the series whose normal functions satisty a pair of boundary
conditions of the same category (B, B/, "B’
converge uniformly in the set.

§17. Asusual, let f(s) be any function which has a Lebesgue integral in (0, 7). From
theorem I of the preceding paragraph it appears that, at a point s of the open interval
(0, m), all canonical Sturm-Liouville series corresponding to f(s) have the same
limits of indeterminacy as FOURIER’S cosine series corresponding to f(s); these limits

, or ;B’) as the first-mentioned series

are therefore » ‘
lim s, ().

n=>om

From the results obtained in §§ 13, 14, it is evident that they are
lim 2——j [fi(s=8)+Lfi(s+2)] SlW dt.*
n->m

Now, if a is any positive number less than , we have

. (T 2n-—-1)1t
1 j’ + sin 4 sin & ( y
n~1>n:o afl (S_t) Sln t b=

by the last corollary of 1L, § 6. It follows that, at a point s of the open interval
(0, ), the limits of indeterminacy of the canonical Sturm-Liouville series corresponding

to f(s) are

2n—1)¢
T L j‘ sin 4 ( di.
lim o J LA G=0+A s+ 0] —" 5
Recalling that « is arbitrarily small, we have thus established the theorem :—7

At any particular point of the open tnterval (0, w) the limits of indeterminacy of
the canonical Sturm-Liouwville series corresponding to an assigned function depend
only wpon the values assumed by the function in an arbitrarily small nezghbourhood of
the pownt.

Let us next consider the case when s is an end point of (0, w), It follows from
theorem III that the limits of indeterminacy of those canonical Sturm-Liouville
series whose normal functions do not all vanish at an end point are the values of

i 50
n>m

* Since lim I5;—1 (s) = 0.

n> o

1 For the theorems of this paragraph ¢f. HoBsoN’s paper cited in the Introduction. Hosson, it will be
recalled, assumes that ¢ has limited total fluctuation in (0, ).
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at this point. It may be proved, from the formula

5, (0) =1 rf(t) sing (2n—1)¢

o sin £¢ ’

that, at s = 0, these limits are

hm j s1n 2%—— !tdt
n>wn T

sm it

and it will be found that, at s = =, they are

Tim & j'f( g SinE@n=1)t g,

i 1
e T s 5t

the numbers « being positive and arbitrarily small in each case. Hence we have the
theorem :—

At am end point of (0, w) the limits of ndeterminacy of all canonical Sturm-
Liowville series corresponding to an assigned function, save those whose normal
Sunctions satisfy the bozmdafry condition u = 0 there, depend only upon the values
assumed by the function wn an arbitrarily small neighbourhood to the right, or left of
the point, as the case may be.

Again, from theorem IV, it appears that, if one of the Fourier's series, say the
cosine series, corresponding to f'(s) converges uniformly in an interval (y, §) contained
within (0, 7), then all canonical Sturm-Liouville series corresponding to f'(s) converge
uniformly in (y, 8). It was shown in § 13 that

)= g [ TG0 + oo A 21 g
converges uniformly to zero for values of s in (y, 8), as n increases indefinitely. Since
both the integrals :
j”ﬁ (s£¢) Sn % .(277,—-1) t

in L
sin 5t

converge uniformly to zero, for these values of s, and since

lim _jwzt__u . (35)

ns-o Sin lt
* This is clearly ~2—}1—_ Ton-1 (s).

t In virtue of the first corollary of 1T, § 9.
1 This result follows from the fact that

J"wdt__—‘ [1+2 2. cosqt]dt
T Jo sin }¢
and that

"smé(2n 1) tdt:O

, n_> o _’ sin ¢
by the last corollary of I, § 6.


http://rsta.royalsocietypublishing.org/

a
/)

A A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

184 - DR. J. MERCER: STURM-LIOUVILLE SERIES OF NORMAL

it is thus clear that the canonical Sturm-Liouville series will all converge uniformly

to f(s) in (y, 8), when

j[fl(e —i)+ fr (s 11)—2f (s)) B2 2n1)E g,
sim 5t

converges uniformly to zero in this interval. We have thus proved the theorem :—

The answer to the question whether the canonical Sturm-Liouwlle series corre-
sponding to an assigned function all converge uniformly, or not, mn an interval (y, 8)
contained within (0, w) depends only upon the values assumed by the function in an
wnterval enclosing (y, 8) wn its interior, and exceeding it in length by an arbitrarily
small amount. _

It is evidently a necessary condition for uniform convergence that the function
should be continuous in (y, 8).

§18. After what was said in the preceding paragraph, it will be clear that,

when lim s, (s) exists as a finite number at a point of the open interval (0,#), all
n>-w

the canonical Sturm-Liouville series corresponding to f(s) converge at this point, and
have the value of this limit for their common sum. We may employ this fact to
obtain conditions under which these series converge.

Let o (s), the bilateral limit of f(s) at the point s, exist as a finite number In
virtue of (35), it is easily seen that

52 (5) =0 () =% o [ LA (=) + /i (5-+) 20 2@ =1ty (36

sin ¢

Let us now suppose that, as 8 diminishes indefinitely, the integral

(LA =0+ fils+o)=20 (] 22EE=D L g,

sin ~t

converges uniformly to zero for positive integral values of n. When any positive
number e is assigned, we may then choose « in such a way that the numerical value
of the right-hand member of (36) is less than 4e for these values of n. Further, «
being fixed, a positive integer N may be chosen great enough to ensure that the
difference between the left- and right-hand members is numerically less than e, for
n=N. Thus we have
s ()0 ()] <,
for = N : and therefore
lim s,(s) = w(s)
We have now established the theorem :— ‘
At a point s of the open interval (0, w), where o (s), the bilateral limit of f(s),
exists as a finite number, a sufficient condition that all the canonical Sturm-Liowville
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series corresponding to f(s) may converge, and therefore have w (s) for thewr common
sum, 1s that, as B dvminishes indefinitely,

[[LAG=0+ fi(s+)-20 () 2222021 g,

sin 3¢

should converge wmaformly to zero, for positive integral values of n.

We proceed to verify that this condition is satisfied when f(s) has limited total
fluctuation in an arbitrarily small neighbourhood (s—ea, s+a) of the point s. Since a
function which has limited total fluctuation is the difference of two monotone
functions, we may confine ourselves to the case in which f(s) is monotone in the
neighbourhood.

Observing that
2w (s) = f(s—0)+f(s+0),

and that, for sufficiently small values of ¢, f, (s+¢) may be replaced by f(s*?), it is
plainly sufficient to show that each of the integrals

A B At L PR B RRR )5 L JCt L

sin 5t sin 5t

converges uniformly to zero, as 8 diminishes indefinitely.
For B8 = a, the first integral is

[/ (5=B) = Fls=0)]]

where, in accordance with the second mean value theorem, 0 =8, =8 It will
therefore have this property, if

sin & (Zn 1)¢ i,
8, sm it

r sin & (2n—1)¢ 4,
8, sin ¢

is limited, for values of 8 and B, in (0, &), and for positive integral values of n. Now

we have

st = n—1
s ‘Z@Wi—l)j =142 3 cosmt.
s 5t m=1

Hence, by integration,

ne=1

n—1 3 3
[ s1n2(27fi 1ty dt = B—B+2 S sinmB _ o5 smm,Bl,
B sin 5t m=1 M m=1 m

from which it is evident that the left-hand member is limited for the stated values
of B, Bi, and n. As similar remarks apply to the second integral, we have the
theorem :—*

If £(s) has limited total fluctuation tn an arbitraridy small neighbovrhood of o

* Obtained by Hosox for the case in which ¢ has limited total fluctuation in (0, ), vide the paper cited
in the Introduction. The same remark applies to the corresponding theorems of §§ 19, 20.

VOL. CCXI.—A. 2 B
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pownt (s) belonging to the open interval (0, w), then all the canonical Sturm-Liouville
series corresponding to f(s) converge, and have the sum L[ f(s—0) + f(s+0)], at this
povnt.

Again, it is easy to see that the above condition is satisfied when

Si(s=t)+ fi(s+t) =20 (s)
¢

has a Lebesgue integral with respect to ¢ in an interval (0, ). For, in this case,

Si(s— t)+j1(sTt) 20 (s)

sin ~t

also has a Lebesgue integral in the interval, so that

Si(s— t)+f1(s+t) —2w (s) d

sin 5t

U [fi(s=t) + fi (s+0) =20 (8)131“2(2” D dt’-ﬁ

5t

where, by a known property of Lebesgue integrals, the right-hand member tends to
zero with B.

Since f;(s+t) may be replaced by f(s+¢) for values of a which are sufficiently
small, we have thus established the theorem :—

At any point s of the open wnterval (0, w), where o (s), the bilateral limut of f(s),
exists as a finite number, a suffictent condition that all the canonical Sturm-Liouville
series corresponding to f(s) may converge, and therefore have w (s) for their common

sum, 1s that
S(s=t)+ f(s+¢) —20 (s)
[4

should have o Lebesque integral with respect to t in an interval (0, o).

In particular we have the following corollary :—

At any point s of the open interval (0, ), where f(s—0) and f(s+0) exist as finite
numbers, a sufficient condition that all the canonical Stwrm-Liouwville series corre-
sponding to f(s) may converge, and therefore have L[ f(s—0)+ f(s+0)] for thewr
common sum, 18 thot

If(s—t)—f(s—())!, I{f(8+t)—f(8+0)
t t

should both possess Lebesgue integrals wn an interval (0, ). _

§ 19. Consider next the case in which s has the value zero. It follows from what
was sald in § 17 that, with the exception of those whose normal functions satisfy
the boundary condition u = 0 at this point, all canonical Sturm-Liouville series

* For an amplification of these theorems ¢f. HoBsON, ¢ The Theory of Functions of a Real Variable,’
pp. 680-683.
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corresponding to f(s) will converge at s = 0, and have lim s, (0) for their common
. n > 0

sum, provided that this limit exists and is finite.
Let us suppose that f(0+0) exists and is finite. Then it is easily seen that

5.(0)=/ (0+0) 7= 1 [ [ ()=f (0-+0) A BN gy

It follows from this, by a proof similar to that employed above, that the series
mentioned will all converge to f(0+0), if, as 8 diminishes indefinitely, the integral

[ Lr@=roropmiin=tlte,

converges uniformly to zero, for positive integral values of n. The reader will be
able to show that this condition is satisfied when f(s) has limited total fluctuation in
an arbitrarily small neighbourhood to the right of s = 0; and also when

S @)=f(0+0)|

¢

possesses a Lebesgue integral in an interval (0, a).
As corresponding remarks apply at the end point s = 7, we have the theorems :—
If f(s) has lomated total fluctuation in an arbitrarily small neighbourhood to the

right of s = 0 . T r .
lefi of s=m’ then those canonical Sturm-Liouwille series corresponding to f (s),

whose normal functions do not satisfy the boundary condition uw =0 at ifg,

converge and have the sum ;go + g at this pomt

lf(t)"{(0+0)l
lf(”*t)‘t‘f(w—o)

has a Lebesgue

If ;ggigg exists as a finite number, and

wntegral with respect to t in an interval (0, &), then those canonical Sturm-Liouville
series corresponding to f(s), whose normal functions do not satisfy the boundary

condition u = 0 at e ~— 0 , converge and have the sum {;g + Og at this point.

§20. We saw in § 17 that all canonical Sturm-Liouville series corresponding to f(s)
will converge uniformly in (y, 8), if

[[ThG=0+A s+ -2r (2 Ermllg,

sin ¢

converges uniformly to zero in this interval. After what was said in § 18, the reader
2 B2
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will have no difficulty in showing that a sufficient condition for this is that, as
B diminishes indefinitely,
[[LAG=0+A 4027 () e =l g,
0 : sin 5t
should converge uniformly to zero, for values of s in (y, 3), and for positive integral
values of .

Let us suppose that the closed interval (y, 8) belongs to the set of points of (0, )
at which f(s) is continuous. It may be shown that the sufficient condition just stated
is satisfied when f(s) has limited total fluctuation in an interval (y/, &) enclosing
(v, 8) in its interior. In doing so, we may evidently confine ourselves to the case in
which f(s) is monotone ; for, in the most general case, f'(s) is the difference of two
functions, each of which is monotone in (y/, &), and has the points of (y, 8) for points
of continuity.

For values of B which are not greater than a certain positive number B, we have

([0 =n=ren e el g p(—g)—y o [ S22C=U g, (a7)

sin $¢ AP sin 1¢

at each point of (y, 8), where, as in § 18, we have 0=, =pB. The integral on the
right has been shown to be limited, for values of B and B, in (0, 8), and for all
positive integral values of n. Further, as B8 diminishes indefinitely, /(s—B)—f(s)
converges uniformly to zero, for values of s in (v, 8); this follows from our hypothesis
as to the continuity of f(s). We conclude, therefore, that the integral on the left
of (37) converges to zero, as B8 diminishes indefinitely, uniformly for values of s in
(y, 8), and for positive integral values of n. As the integral

g o sin g (2n—1) ¢

LG 2t
may be shown to have the same property, 1t will be now clear that we have established
the theorem :— ‘

If the set of points at which f(s) is contenuous includes a closed interval (v, 8) lying
within (0, ), and of f(s) has lmited total fluctuation in an interval (y/, 8') enclosing
(v, 8) @n ats interior, then all the canonical Sturm-Liouville series corresponding to
f(8) converge uniformly in (y, 8).

Again, let us suppose that, for each value of s in (y, 9),

Ji(s=0)+ /i (sn+—t)_2f(s)i

14

has a Lebesgue integral with respect to ¢ in an interval (0,8). Then clearly

,j:[fl(s—t)Jrfl(s+t)—2,f(8)]S—irl*%§§2L__1)’édt]S' : V‘ﬁ(s—t)%rﬁ(;”)—ZﬂS) s

n %t sin 5800 |

We at once deduce the theorem :—
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A sufficient condition that all the canonical Sturm-Liouville series corresponding to
F(s) may converge uniformly in an interval (y, 8) lying within (0, 1) is that

jﬁ.fﬁ—irhf@+¢%—2f®)

4
should exist as a Lebesque integral for each value of s in (y,3d), and that as B
dimanishes wndefinately, it should converge uniformly to zero in (y, 8). In particular,
it ts sufficient that
p g
[ d, j
0

J 0

dt

Js=0)=f(s)

1)1 | g

¢

2

should both exust, and converge uniformly to zero.®

§21. Let s be a point belonging to any interval (y,8) which is contained within
(0, 7). Let o, (s) be the sum of the first n terms of any canonical Sturm-Liouville
series at the point s, and let s, (s) have the signification of §10. It follows from the
results obtained in §§ 1015 that, as n increases indefinitely,

o (8)=su (5)
converges uniformly to zero in (y, ). Hence, in virtue of the lemma of II., § 10, we

see that
o () o (s) .40, (8)  si()+sa(s)+...+s.(s)
n n

converges uniformly to zero in this interval. In particular, since (y, 8) is any interval
contained within (0, ), we see that this difference converges to zero at each point of
the open interval (0,7). It will be seen from the results of §§ 10-15 that this is also
true at an end point, provided that the normal functions of the Sturm-Liouville series
do not all vanish there.
Now we have (§§ 13, 14)
52(5) = g {Ta (5)+ Taua ()} =

L
m KU

T sin &+ (2n—1)t .
F(t)“%i(;;r)‘dt’

=

where I (1) = L [ Ai(=s—1t)+ fi(—=s+t)+ fi(s—t)+ fi(s+t)]. Hence we obtain

Mﬂﬂme+M@:LyF@@£%ﬁm.

n nr sin ¢

* It is well known that, as n increases indefinitely, the integral

NP RO L I

converges uniformly to zero for values of s in (v, 8), if, as ¢ diminishes indefinitely,

[/ (s=1)+f (s+1) ~ 2 ()] log
converges uniformly to zero in an interval containing (y, 8) in its interior (vide Hossox, ‘The Theory of
Functions of a Real Variable,” pp. 691-694). This gives another condition for the uniform convergence of
Sturm-Liouville series, The formal statement of it is left to the reader.
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~ Since each of the four functions

ljﬂfl(isit) <§i9 %17-@t>2dt (0<a<m)

M Ja sm 5t

converges uniformly to zero in any finite interval® (IL, § 10), we see from this that,
for any positive value of « less than ,

91(8)+92(3)+~-+9n(3)_.1j:F(t)(Sin%?n)Zdt. .. ()

7 nar sin 4¢

converges uniformly to zero in (0, 7), as the positive integer n increases indefinitely.
- Let us suppose that s is a fixed point of the closed interval (0,7) at which F(+0)
has a finite value. When any positive number e is assigned, we may then choose «

small enough to ensure that

F () = F(+0)+4¢

at all points of (0, ). With this choice of , we have

1 ‘.:F (t) <§1~n—"}71_nf>2 dt = [m+ ] 1 J‘a <Sin %77t>2 i,

nir sin ¢ nar Jo \ sin 3¢
which, since
. 1 (*/sin dng\?
Iim —- —2—) dt = 11
ns>o0 NI Jo \ SIN 5T/

and e is arbitrarily small, leads to

T Su(s) 55 (5) + ...+, (s) =T (+0).

n >0 7

The reader will have no difficulty in seeing that this inequality is valid when
F (+0) has one of the improper values + o (¢f. I1L, § 13). It may be proved in the
same way that )

1im <1 (S>+92 (3) +...+9n (S) > F(+0)
7 "

n=>w

From these inequalities it is evident that, at any point of (0, #) where I (+0)

exists,
liﬂl S (-5) +§2 (5‘) + ... +§n (8)

n> o n

exists and is equal to it. Moreover, in virtue of our definition of f; (s),] it will be
seen that at a point of the open interval F (+0) is lim %[ f(s—¢) + f(s+t)]; that at
s =01t is f(0+0); and that at s = 7 it is f(w—O).I‘»O A

* This seems to have escaped notice hitherto.

T The simplest method of obtaining this result is to apply CAaucuY’s theorem to (35) above.

1§13,
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Again, let us suppose that the set of points at which f(s) is continuous includes a
closed interval (y, 8) lying within (0, 7). Then, supposing « <y and < 7w—3, we

have
F@)=3[f(s—t)+f(s+t)] O=t=a)(y=s=3).

It follows from our hypothesis as to the continuity of f(s) that, when any positive
number e is assigned, we may choose @ so small that

|F (1) — f(5)] < e,

for these values of s and ¢. Hence, observing that

™ 1 L 2
L[ (sndaty g,
nar Jo \ sin 5t

we obtain
sin int LF(s)] [ <sin %nt) e <qin Int\?
mrj ()<sn1t> di—f(s)| < nar ja sin 5t dt+ Snwj sin 4t / dt.

The second term on the right is not greater than je, and, since

s 1p\2
n>w 1 Ja \ SIN 5t .

we can clearly find a positive integer N, great enough to ensure that the first is not

greater than je, for all values of n =N, and of s in (y, §). Again, we can choose a
positive integer N, in such a way that the numerical value of the difference (38) is
less than e, for all values of n = N, and of s in (y, 8§). It follows at once that, for
values of n which are not less than the greatest of N, and Nj, we have

s1(8) +s5(8)+...+5,(s) “f(g)i <e

for all values of s in (y, 8). In other words, we have shown that, as n increases

indefinitely,
s1(8) +s2(8) ... +sau(s)
n

converges uniformly to f(s) for these values of s.
We may summarise the results obtained in this paragraph in the following
theorems :—
The arithmetic mean of the first n partial sums of any canonical Sturm-Liouville
series corresponding to f(s) converges to tlin% L f(s=t)+ f(s+t)], as n increases
>

indefinitely, at each point of the open interval (0, w) where this limit exists as a finite
number ; moreover, at a point where this limit has one of the improper values + o, it
diverges to this value and is non-oscillatory. If the set of points at which f(s) is
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192 DR. J. MERCER: STURM-LIOUVILLE SERIES OF NORMAL

continuous includes a closed interval lying within (0, w), then the arithmetic mean
converges to f(s) unaformly wn this interval.
If the normal functions of o Sturm-Liowville series do not satisfy the boundary

condation u = 0 at Z - 2, then, as n increases wndefinitely, the arithmetic mean of the
Jirst 0 partial sums of the series converges at ‘;j 0 o ;EOJrg; whenever this limit

exists as a finite number; moreover, when this limit has one of the improper values
+ o, the arithmetic mean diverges to this value and is non-oscillaiory.

§ 22. We proceed to apply the foregoing results to the more general Sturm-Liouville
series

¥y () j[ 9 () (y) ¥ (y) dy -+ (w)ﬁ 9 W)V (y) ¥ (y) dy
+...+\Ifn(a;)‘r;g(y)\lfn(y)F(y)cly+.... .. (89)

We saw above (II1., § 22) that the terms of this series are identical with those of

¥ (s) ¥ () [ P (5)
o (e @) ds S w0ttt B [ (o(a) fl) et (40)
where s is the point of (0, ) corresponding to the point « of (a, b).

In connection With the series just written, let us consider the series

B ) [ (0 @) 9 () [ (0 F O de oot () [ (S O e (41)

This latter is a canonical Sturm-Liouville series corresponding to f(s); and f(s), it
will be recalled, is F (x) expressed as a function of s.  We shall refer to (41) as the
camonical Sturm-Liouville series related to the general Sturm-Liowville series (39).
Let o, (s) be the sum of the first n terms of the series (41); and let &, (s) be the
sum of the first n terms of the series (40). We proceed to show that, as #» increases

indefinitely,
o, (5)—7,(s)

converges to zero uniformly in the whole of (0, ).

In the first place, let us suppose that the pair of boundary conditions satisfied by
the functions ¥, (x) is B; the normal functions i, (s) will therefore satisfy B’. By
the result obtained in § 10, it is known that, as n increases indefinitely,

o (8)=5: (5)
converges uniformly to zero in (0, 7); and by the results obtained in §§ 13, 14 (¢f. § 21)

50(6) = = [ LA (5= LA (401, (—s= s (o) B0 B =M g
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Thus we see that

o (8)= [Z[ﬁ(s—t)ﬁ;(m)m(-s'_t)+f1(_S+¢)]§Es.iﬁmclt

1
o | sin &t

converges uniformly to zero in (0, ).
It may be shown in a similar way that

N _ o _ sin & (2n—1) ¢
5 ()= 5 (S)L[hl(s O+ (s+0)+ by (=s=0) (=5 +0)] SHEEE

A A

has the same property, the function %, (s) being defined for all values of s by the rules
hy(s)=w(s)f(s) (0=s=m),
=0 (7—-7T<S <O),
by (s+2m) = Iy (s).

It follows at once that, in order to establish the result.stated, it will be sufficient
to show that, as n increases indefinitely, each of the four integrals

"[h(£s£t) } j]sin%(i&n—-l)t
L[—————w(s)- AELEL)) i de . SRR (42)

OF

converges uniformly to zero in (0, 7).

§ 23. The function w(s) is defined in the interval (0, 7) only, and, by the hypothesis
of II1., § 1, has a continuous differential coefficient in this interval. Let us define it
for values of s in (—m, 0) in any manner consistent with the conditions (1) that in
(—m, m) it shall be always positive, (2) that it shall have a continuous differential
coefticient in (—m, 7), and (3) that w (—=) = w (7), w' (—7) = w' (7) ;* then let us
define it for values of s outside (—, ) by the rule

w (s+2m) = w(s)

A

The function w (s) defined in this way assumes only positive values, and has a
differential coeflicient which is everywhere continuous. Also, on referring to the
definitions of the functions f; (s), %, (s), it will be seen that

() = w(s) /3 (5)

for all values of s,

SOCIETY

* One method of doing this is as follows: Let w; (s) be the (possibly, a) rational integral cubic function
of s whose coefficients are such that w; (0) = w (0), wy' (0) = w' (0), wy (= 7) = w(w), wy' (~7) = w' ().
Since wy (~ ) and w; (0) are both positive, we can clearly choose a number C great enough to ensure that

wy (s) = wy (s) + COs? (w +5)?

OF

is positive in the whole of (~w, 0). The conditions (1), (2) and (3) will all be satisfied if we define w (0)
to be equal to wy (s) in (-, 0).
VOL. CCXL—A., 2 ¢


http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Consider now the integral

jo [hl s+t) —fi(s H)} sin (272—-1)15 dt.

, S aw(s) sin 1t
It is equal to

(™ . w(s+1) sin 4 (2n—1)¢
-y _ 2 | :

jo Sils+1) [ w (s) 1:] sin ¢ s

and this in turn is equal to
[f (s+8) x (s,£) sin 3 (2n—1)¢dt, . . . . . . . (43)
where
_w(stt)—w(s) ;= _ 2w (s) _
x(51) w (s) sin ¢ (0<t=m) w (s) (t=0)

Recalling that w(s) is never zero, it is evident that y (s, ¢) will be a continuous
function of s and ¢ in the square 0 =s <m, 0 =¢ =, if the function

(s t) = =06 ) ) (o= 0)

is everywhere continuous. The only points at which there can be any doubt as to
the continuity of y, (s, t) are those which lie on ¢ = 0; and it is not very difficult to
see that the function is continuous at these points also. For, when ¢ 0, we have

X1 (547, ) =x. (s, 0) = & (s+n+t1——w (s47) _yy (s) = w (s+5+0t)—w' (),

where, by the mean value theorem, 0 <6< 1. Since w'(s) is continuous we see at
once that
Im o, (s+2,8) = x (s, 0),

N> 0t>0

which proves that y, (s, #) is a continuous function of s and ¢ at points on the line
t = 0. It is therefore clear that y (s,t) is continuous in the square 0 =s =,
0 =t =; and hence, in virtue of the second corollary of IL., §9, that (43) converges
uniformly to zero in (0, ), as n increases indefinitely. It follows that

L []ll (s+1) Y +t):| sin & (2n—1)¢ 5,

Cw(s) sin 4t

converges uniformly to zero in (0, 7).
It may be shown in the same way that each of the other integrals (42) has this
property. As we have already seen, this is sufficient to establish that

o, (8)— 0, (s)

converges uniformly to zero in (0, ).
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. Hitherto it has been assumed that the functions ¥, () satisfy the pair of boundary
conditions B. By using the results of §§11, 12, and following the line of proof
indicated above, it will be found that the final result is unaffected when the pair of
boundary conditions happens to be either B, ’B, or /B. Hence, as &, (s) is the sum
of the first n terms of the series (39), we have the theorem :-—

The limits of indeterminacy of a Sturm- Liowville series at any point are the same
as the limits of indeterminacy of the canonical Sturm-Liouwlle series related to vt at
the corresponding point of (0,m). Further, if the former series converges uniformly
n any set of points, the canonical series related to it converges uniformly in the
corresponding set of povnts of (0, ).

§ 24. The theorem of the preceding paragraph enables us to translate the theorems
of §§17-21 into theorems on the convergence of the Sturm-Liouville series

b b
() | 9 () W () F () dy+ 9 ()| g (0) W () F (9) dy

+...,+\I’,,(ac)£g(g/)\1',;(y)F(y)oly+.... L (39)

As a preliminary we recall that, if s is the point of (0, o) which corresponds to
x of (a, b),
z 1/2
s=£[(8)" au

It follows that the point s—¢ of (0, ) corresponds to x—y, where, replacing ¢ by ¥
for convenience of notation, ¥, is the function of = and y defined by

_ T ._(Z 1/2 )
y= fL-y,@ da;

further, the point s+t of (0, 7) corresponds to the point -+, where
T4y, 1/2
= AN
y=E¢€ L ( k) die.

The functions ¥, ¥, evidently have positive values for positive values of ¥, and tend
to zero with v.

Referring now to the results of § 17, it will be evident that the limits of
indeterminacy of the series (41), at a point of the open interval (0, ), are

T L T £ s— sin 3 (2n—1)¢
1}1;1:0 5 L [f(s=t)+f(s+1)] Sin 17 dt,

for values of a which are sufficiently small. Since f(s) is F (x) expressed as a
2c¢c2
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function of s, it follows that the limits of indeterminacy of (39) at the corresponding
point of (a, b) are

Tm - (“TF (2 sin g (Zn—1)y
].lm o jl) [F (-’U ?/1)+F(m+y2) W— d .

n-=>w

Hence the theorem :—
At any particular point of the open interval (a, b) the limits of indeterminacy of the

Sturm-Liouwille serves (39) depend only wpon the values assumed by F (x) and % m an

arbitrarily small neighbourhood of the povnt.

In a similar way it may be shown that :—

At an end-point. of (0, w), where the functions V¥, (x) do not satisfy the boundary
condutton v = 0, the lumits of indeterminacy of the Sturm-Liouwville series (39) depend

only upon the values assumed by F (x) and % wn an arbitrarily smalkneighbourhood to

the right, or left, of the point, as the case may be.

The statement of the theorem which corresponds to the third of § 17 is left to the
reader.

§25. When F () is of limited total fluctuation in an interval of (a, b), the function
S (s) is of limited total fluctuation in the corresponding interval of (0, ) ; also, if x is
any point of the former interval, and s is the corresponding point of the latter, we
have

F(2—0) = f(s—0), F(x+0)=f(s+0).

It follows at once, from the second theorem of § 18, that :—

If ¥ () has limited total fluctuation in an arbitrarily small neighbourhood of a
pownt x belonging to the open interval (a, b), the Sturm-Liowville series (39) converges,
and has the sum %[ F (x—0)+F (x+0)] at this point.

Again, we see from III., § 24, that when Q (x) exists, w (s) exists and is equal to it.
Hence, from the third theorem of § 18, we see that -

At any point x of the open interval (a, b), where Q (x), the bilateral limit of F (),
exists as o finite number, a sufficient condition that the Sturm-Liouville series (39)
may converge, and therefore have Q (x) for its sum, is that

F(z—y)+F (x+y2)—2&.2 (%)
Y

should have a Lebesgue integral with respect to y in an nterval (0, a).

The corollary to this theorem which corresponds to that of § 18 is of interest, since
it may be stated without the intervention of the functions #, and ¥, It will be found
to read as follows :—

At any point = of the open interval (a,b), where F (x—0) and T (x+0) exist as
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Jinute numbers, a sufficient condition that the Sturm-Liouville series (39) may converge,
and therefore have 4 [F (x—0)+F (x+0)] for its-sum, s that

IF(:K—?/)—FW—O)’ lE(-‘ﬂ-_!—y)—F‘(%O)
i y ’ Y

should both have Lebesgue integrals with respect to y in an interval (0, o).
There is no necessity to give the analogues of the theorems of §§ 19, 20, for their

A A

SOCIETY

OF

A B

SOCIETY

OF

statement can present no difficulty. The reader should observe, however, that,
corresponding to the particular case mentioned in the enunciation of the last theorem
of § 20, we have a criterion of uniform convergence which does not involve the functions
y, and .. It is, as follows :—
A sufficient condition that the Sturm-Liowville series (39) may converge wniformly
e an interval (ar, b)) lying within (a, b) 18 that
" F(w—y ’I’)!d [B\ F(z+y)-F(2)!,
0 Jo Y I
should exist as Lebesgue integrals, for each value of x in (ay, by), and that, as B
dimanishes indefinitely, both should converge uniformly to zero in (ay, b,).
§26. We saw in § 23 that the difference
o, (8)—0o,(s)
converges uniformly to zero in the whole of (0, 7). From the lemma of IL, § 10, it
follows that the difference between the arithmetic mean of the first n partial sums of
the series
fi’;g;[ () w(0) (1) dmﬁhg"g[ W () 0 () £(0) i+ . +‘Pn((8)[ U (0) (1) F(B)di+ ... (40)
and the arithmetic mean of the first » partial sums of
) [ 0 (00 4 (5) [ 900070 ot ([ 0 (S @) i (1)
converges uniformly to zero, as n increases indefinitely.
Recalling that the terms of (40) are equal to the corresponding terms of
b
@) [ 9B O F W) Ay ()] g ) v ) F ) dy
b
+...+xpn(x)jag(y)wn(y)F(y)dy+..., . (39)
and applying results proved above (§21) in regard to the convergence of the
arithmetic mean of the first n partial sums of (41), we obtain the theorems :—-
The arithmetic mean of the first n partial sums of the Sturm-Liouville series (39)
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converges to lim L [F (x—y,) +F (x+y,)], as n increases indefinitely, at each point of
y>0

the open interval (@, b) where this limit exists as a finite number; moreover, at a
pownt where this limit has one of the improper values + o, it diverges to this value
and 1s non-oscillatory. If the set of points at which F (x) ts continuous includes a
closed interval lying within (a, D), then the arithmetic mean converges to F (w)
uniformly in this interval.

. . 1 . X .o _ x€xr =
If the functions ¥, (x) do not satisfy the boundary condition v = 0 at *

_ Z’ then,
as n wncreases indefinitely, the arithmetic mean of the first n partial sums of the

win-Li ouvi, , x=a , F(a+0) e g e
Sturm-Liouwille series (39) converges ot web ©F (b—0) whenever this limit exists

as a finite number ; moreover, when this limit has one of the improper values + o,
the arithmetic mean diverges to this value and vs non-oscillatory.
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